Search for heavy resonances decaying into third generation quarks with the ATLAS detector

Josu Cantero (Oklahoma State University)

July 15, 2020

HEP seminar

Introduction

- Theories beyond the Standard Model (SM) involve enhanced symmetries that predict new gauge bosons, usually called W' or Z' bosons.
 - $\rightarrow\,$ Some models favor couplings of these new gauge bosons to third generation quarks.
 - \rightarrow Good signal/background ratio thanks to *b*-tagging and top-tagging techniques.
 - $\rightarrow\,$ Complement searches using final states with first and second generation quarks.
- $\rightarrow\,$ This motivate searches for new heavy resonances:

```
 W'→ tb (fully hadronic channel)
 Phys. Lett. B 781 (2018) 327 (pdf)
 Z'→ bb
 JHEP 03 (2020) 145 (pdf)
 Z'→ tt

         (fully hadronic channel)
         EXOT-2018-48 (pdf)
```

Outline:

- \rightarrow Jet reconstruction and calibration (arXiv:2007.02645)
- \rightarrow Jet b-tagging (arXiv:1907.05120)
- \rightarrow Jet substructure and top tagging (arXiv:1808.07858)
- → Analysis results

- Jets are reconstructed using the anti- k_t algorithm with radius parameters R = 0.4 (small-R) and 1.0 (large-R).
- For use in jet reconstruction, calorimeter cells are first clustered into three-dimensional, massless, topological clusters using a nearest-neighbour algorithm.
 - → An event-by event correction to account for the position of the primary vertex in each event is applied to every topo-cluster.
- Jets reconstructed using only calorimeter-based energy information are referred to as EMTOPO jets.
- Hadronic final-state measurements can be improved by making more complete use of the information from both the tracking and calorimeter systems.
 - → Particle flow algorithm used. It combines information from the tracker and the calorimeter. Specifically, energy deposited in the calorimeter by charged particles is subtracted from the observed topo-clusters and replaced by the momenta of tracks that are matched to those topo-clusters → this improves energy and angular resolution, reconstruction efficiency, and pile-up stability compared to calorimeter jets.
 - $\rightarrow\,$ Jets reconstructed with $\rm PFLOW$ objects are referred to as $\rm PFLOW$ jets.
 - → Only available for jets with R = 0.4.

Jet reconstruction and calibration

- Jets need to be calibrated to restore the energy to that of jets reconstructed at particle level.
- This calibration is applied in different steps:
 - → pile-up corrections remove the excess energy due to additional proton-proton interactions.
 - $\rightarrow\,$ The absolute JES calibration to correct the jet so that it agrees in energy and direction with truth jets from the MC.
 - \rightarrow Global sequential corrections to improve jet resolution and to remove the dependence on the flavour of the jet.
 - → In situ calibration to remove the remaining differences between data and MC simulation. It is derived using well-measured reference objects, including γ , Z bosons, and calibrated jets.

The jet-area method uses to estimate the energy density (ρ) due to pile-up.

$$\rightarrow p_{\rm T}^{\rm corr} = p_{\rm T} - \rho \times A - \alpha \times (N_{\rm PV} - 1) - \beta \times \mu$$

- The negative dependence on µ for out-of-time pile-up is a result of the liquid-argon calorimeter's pulse shape.
- Good stability of the $p_{\rm T}$ of the jet after all corrections.

Jet reconstruction and calibration

- The absolute JES correction corrects the reconstructed jet four-momentum accounting for non-compensating calorimeter response, energy losses in dead material and out-of-cone effects. (R = E_{reco}/E_{true})
- The calibration is derived using a Pythia MC simulation of dijet events after the application of the pile-up corrections.
- After the JES correction, the response can vary from jet to jet depending on the flavour and energy distribution of the constituent particles.
 - → A quark-initiated jet includes hadrons with a higher fraction of the jet p_T that penetrate further into the calorimeter, while a gluon-initiated jet contains more particles of softer p_T , leading to a lower calorimeter response and a wider transverse profile.

Jet reconstruction and calibration

- One final calibration step to account for differences between the jet response in data and simulation causes by imperfect simulation of both the detector materials and the physics processes involved.
 - → Final in situ calibration measures the jet response in data and MC and uses the ratio as an additional correction in data: $c = \frac{R_{\text{in situ}}^{\text{data}}}{R_{\text{in situ}}^{\text{MC}}}$
- η intercalibration corrects the energy scale of forward (0.8 < $|\eta| < 4.5$) jets to match those of central ($|\eta| < 0.8$) jets using the $p_{\rm T}$ balance in dijet events.
- Z+jet and γ +jet analysis balance the hadronic recoil in an event against the p_T of a calibrated Z boson or γ.

Component	Description								
	η intercalibration								
	Z + jet								
Electron scale Electron resolution Muon scale Muon resolution (ID) Muon resolution (MS) MC generator JVT cut Ad¢ cut Subleading jet veto Showering & topology Statistical	Uncertainty in the electron energy scale Uncertainty in the feators nergy roubtion Uncertainty in the monomentum resolution in the DD Uncertainty in monomentum resolution in the MS Difference between MC even provide the state of the state of the state of the state Variation of Ad between the yiel and Z boon Radiation suppression through second yiel with Modelling energy flow and distribution in and around a jet Satistical uncertainting in 28 discrete pre terms.								
	$\gamma + jet$								
Photon scale Photon resolution MC generator JVT cut $\Delta \phi$ cut Subleading jet veto Showering & topology Photon purity Statistical	Uncertainty in the photon energy results Uncertainty in the photon energy resolution Difference between MC event generators of events target meterinity Variations of Δh between thirdy become left Modelling energy flow and distribution in and result a jet Parity of sample used for $\gamma + j$ te balance Statistical uncertainty in 16 discrete pr-terms								
	Multijet balance								
$\begin{array}{l} \Delta \phi \mbox{ (lead, recoil system)} \\ \Delta \phi \mbox{ (lead, any sublead)} \\ MC \mbox{ generator} \\ p_{T}^{aym} \mbox{ selection} \\ Jet p_{T} \\ Statistical \end{array}$	Angle between leading jet and recoil system Angle between leading jet and closest subleading jet Difference between MC event generators Second jet's pr contribution to the recoil system let pr threshold Statistical uncertainty in 28 discrete pr terms								
	Pile-up								
μ offset $N_{\rm PV}$ offset ρ topology $p_{\rm T}$ dependence	Uncertainty in the μ modelling in MC simulation Uncertainty in the N _{PV} modelling in MC simulation Uncertainty in the pre-vent p_i density modelling in MC simulation Uncertainty in the residual p_i dependence								
Jet navour									
Flavour composition Flavour response b-jets	Uncertainty in the proportional sample composition of quarks and gluons Uncertainty in the response of gluon-initiated jets Uncertainty in the response of <i>b</i> -quark-initiated jets								
Punch-through	Uncertainty in GSC punch-through correction								
Single-particle response	High-pT jet uncertainty from single-particle and test-beam measurements								
AFII non-closure	Difference in the absolute JES calibration for simulations in AFII								

- 5% of uncertainty for $p_{\rm T}\approx$ 20 GeV. It decreases to 1% for $p_{\rm T}\approx$ 200 GeV and < 1% for 200 GeV $< p_{\rm T}<$ 2 TeV
 - → the high- $p_{\rm T}$ 'single particle' uncertainty is derived from studies of the response to individual hadrons and is used to cover the region beyond 2.4 TeV, where in-situ measurements no longer have statistical power.
- Uncertainty due to pile-up and jet flavor response dominates at low $p_{\rm T}$.

- The identification of jets containing b-hadrons (b-jets) against the large jet background containing c-hadrons but no b-hadron (c-jets) or containing neither b- or c-hadrons (light-flavour jets) is of major importance in many areas of the ATLAS physics programme.
 - \rightarrow ATLAS uses various b-tagging algorithms. These algorithms exploit the long lifetime, high mass and high decay multiplicity of *b*-hadrons as well as the properties of the *b*-quark fragmentation.
- Performance of a b-tagging algorithm is characterised by the probability of tagging a b-jet and the probability of mistakenly identifying a c-jet or a light-flavour jet as a b-jet.
- Identification of *b*-jets based on:
 - $\rightarrow\,$ Track reconstructed in the ID with $p_{\rm T}>$ 500 MeV and $|\eta|<$ 2.5.
 - → Primary vertex reconstruction: displaced tracks from *b*-hadron decays selected using d_0 and z_0 (transverse and longitudinal impact parameters): low-level b-tagging algorithm IP3D.
 - \rightarrow Secondary vertex consistent to *b*-hadron decay: low-level b-tagging algorithm SV1.
 - \rightarrow Topological structure of weak *b* and *c*-hadron decays inside the jet: low-level b-tagging algorithm JETFITTER .
- High level b-tagging algorithms such as MV2 (DL1) uses boosted decision trees (deep neural networks) combining the information previously listed.
 - \rightarrow Mixed of $t\bar{t}$ and Z' samples used for the training

Input	Variable	Description							
mput	n n	Jet n							
Kinematics	PT	Jot PT							
	1	Jet n							
1000 / 000	$log(P_b/P_{light})$	Likelihood ratio between the <i>b</i> -jet and light-							
IP2D/IP3D	1 (0 (0))	Libeliheed estimates the feared exist home							
	$log(P_b/P_c)$	Likelihood ratio between the b- and c-jet hypo-							
		theses							
	$log(P_c/P_{light})$	Likelmood ratio between the c-jet and light-							
		flavour jet hypotheses							
	m(SV)	Invariant mass of tracks at the secondary vertex							
		assuming pion mass							
	$f_E(SV)$	Energy fraction of the tracks associated with							
SVI		the secondary vertex							
311	N _{TrkAtVtx} (SV)	Number of tracks used in the secondary vertex							
	N2TrkVtx(SV)	Number of two-track vertex candidates							
	$L_{xy}(SV)$	Transverse distance between the primary and							
		secondary vertex							
	$L_{XVZ}(SV)$	Distance between the primary and the second-							
		ary vertex							
	$S_{XYZ}(SV)$	Distance between the primary and the second-							
		ary vertex divided by its uncertainty							
	$\Delta R(\vec{p}_{ict}, \vec{p}_{vtx})(SV)$	ΔR between the jet axis and the direction of the							
		secondary vertex relative to the primary vertex.							
	m(JF)	Invariant mass of tracks from displaced vertices							
	$f_E(JF)$	Energy fraction of the tracks associated with							
	5=0.7	the displaced vertices							
	$\Delta R(\vec{p}_{iet}, \vec{p}_{vtv})(JF)$	ΔR between jet axis and vectorial sum of mo-							
JETFITTER	4 340 3 10 2 1	menta of all tracks attached to displaced vertices							
	Syme(JF)	Significance of average distance between PV							
	- Ayet - y	and displaced vertices							
	NTG AVVIV (JF)	Number of tracks from multi-prong displaced							
	TRACTICE /	vertices							
	Nypaway (JF)	Number of two-track vertex candidates (price							
		to decay chain fit)							
	N ₁ at matin (IF)	Number of single-prong displaced vertices							
	N-2 arts control (IF)	Number of multi-prong displaced vertices							
	Loug (2 nd /3 rd vtx)(IF)	Distance of 2nd or 3rd vertex from PV							
	$I_{}(2^{nd}/3^{rd}vtx)(IF)$	Transverse displacement of the 2nd or 3rd vertex							
JETFITTER c-tagging	$m_{T,t}$ (2 nd /3 rd yty)(IF)	Invariant mass of tracks associated with 2nd or							
	mink(2 / 5 V(X)(31)	3rd vertex							
	F_{-} , $(2^{nd}/3^{rd}vtx)(IF)$	Energy fraction of the tracks associated with							
	2 _{Tik} (2 /5 vix)(31)	2nd or 2rd warter							
	fre(2nd/3rdyty)(IF)	Fraction of charged jet energy in 2nd or 2nd							
	JE(2 / 5 VO()JF)	Fraction of charged jet energy in 2 ^m or 3 ^m							
	N (2nd/2rduty)(IE)	Number of tracks associated with 284 or 364							
	TrikAtVix(2 '/ 5" VIX)(JP)	wantee of tracks associated with 2 nd of 3 nd							
	Winin Winay Wing (and (and the start) (HE)	Min man and my truck and dits of trucks at							
	I trk, I trk, I trk, (2 ^{nu} /3 ^{nu} VIX)(JF)	2nd or 2rd warter							
		2 ^{nu} or 3 ^{ru} vertex							

- Four WPs based on the efficiency of b-flavoured jets are derived: 60%, 70%, 77%, 85% WPs.
- Improvements in the light-flavour jet and *c*-jet rejections by factors of around 10 and 2.5 for high-level *b*-tagging algorithms at $\epsilon_{\rm b} = 70\%$.

- The performance of each b-tagging WP in the MC is corrected to the one observed in data.
 - → This is done by means of scale factors, SF $(p_T, \eta) = \epsilon_{data}(p_T, \eta)/\epsilon_{MC}(p_T, \eta)$
- $t\overline{t}$ events in the di-lepton channel are selected in data and MC.
 - \rightarrow High purity of *b*-flavoured jets.
 - \rightarrow Events classified to extract flavour fractions: *bb*, *bl*, *ll*.
 - \rightarrow bb flavour fraction used to extract ϵ_b in data and MC.

- Adequate description of ϵ_b by the MC.
- Similar SFs derived for each *b*-tagging WPs.

- Several different uncertainty sources considered.
 - → High $p_{\rm T}$ extrapolation uncertainties derived from MC to cover the high $p_{\rm T}$ region where data is not available.

MV2 70% WP:

Source of uncertainty	Relative uncertainty on ε_b [%] per jet p_T bin [GeV]													
source of uncertainty	20-30	30-40	40-60	60-85	85-110	110-140	140-175	175-250	250-600					
Data statistics	3.7	1.7	0.7	0.6	0.6	0.6	0.8	1.1	2.8					
MC statistics	2.2	1.0	0.4	0.2	0.2	0.2	0.2	0.2	0.5					
Jet energy scale	4.5	0.8	0.3	0.1	0.1	0.1	0.1	0.2	0.4					
tī modelling	3.2	1.5	1.0	0.7	0.7	0.8	1.0	0.8	0.5					
Single top modelling	2.5	0.5	0.6	0.6	0.4	0.3	0.3	0.4	1.1					
Fake leptons modelling	1.8	1.1	0.1	0.2	< 0.1	< 0.1	0.2	< 0.1	0.2					
Other sources	1.4	0.9	0.2	0.3	0.2	0.1	0.1	0.1	0.3					
Total	7.7	3.0	1.4	1.1	1.0	1.1	1.3	1.5	3.1					

14 / 36

- Large-*R* jets (*R* = 1.0) using EMTOPO objects as inputs.
 - \rightarrow Since mass of Z, W and top larger than light quarks, a large radious jet is needed to collect all the decay products.
- Grooming technique used to remove the effects of pile-up and the underlaying event.
 - → Difference with respect to small-R jets. Larger effects expected since R is large.
 - → Trimming procedure in which original constituents of the jets are reclustered using the k_t algorithm with a radius parameter $R_{sub} = 0.2$ to produce a collection of subjets. These subjets are then discarded if the p_T is less than 5% of the p_T of the original jet.
 - → Jet mass calibration (JMS) step included in the calibration chain of large-R jets. The rest similar to what is done for small-R jets.

- From large-*R* jet constituents several observables can be defined to quantify a particular feature of the jet in an analytic way:
 - \rightarrow jet mass.
 - → Splitting scales: d_{12} , d_{23} ...
 - → Energy correlation functions: C_2 , D_2 ...
 - \rightarrow N-subjettiness: τ_2 , τ_3 , τ_{32} ...

- These variables can be used to derive "low-level" W/top taggers or combined using multivariate classifiers (BDT, DNN ...) to derive "high-level" top taggers.
- Shower deconstruction: top-tagger based on the reconstruction of subjets to determine whether the subjet pattern is compatible with a parton shower profile typical of a top-quark decay.

- From large-*R* jet constituents several observables can be defined to quantify a particular feature of the jet in an analytic way:
 - \rightarrow jet mass.
 - → Splitting scales: d_{12} , d_{23} ...
 - → Energy correlation functions: C_2 , D_2 ...
 - \rightarrow N-subjettiness: τ_2 , τ_3 , τ_{32} ...

- These variables can be used to derive "low-level" W/top taggers or combined using multivariate classifiers (BDT, DNN ...) to derive "high-level" top taggers.
- Shower deconstruction: top-tagger based on the reconstruction of subjets to determine whether the subjet pattern is compatible with a parton shower profile typical of a top-quark decay.

	W Boson Tagging								Top Quark Tagging													
	DNN Test Groups								Chosei	n Inputs	DNN Test Groups Chosen								n Inputs			
Observable	1	2	3	4	5	6	7	8	9	BDT	DNN	1	2	3	4	5	6	7	8	9	BDT	DNN
m ^{comb}	0	0		0	0	0	0	0	0	0	0		0	0	0		0	0	0	0	0	0
p_{T}	0	0			0	0		0	0	0	0			0	0			0	0	0	0	0
e_3	0	0				0			0						0			0		0	0	0
C_2			0	0	0		0	0	0		0	0	0	0		0	0		0	0		0
D_2			0	0	0		0	0	0	0	0	0	0	0		0	0		0	0		0
τ_1	0	0				0			0	0					0			0		0		0
τ_2	0	0				0			0						0			0		0	0	0
τ_3															0			0		0		0
τ_{21}			0	0	0		0	0	0	0	0	0	0	0		0	0		0	0	0	0
T32												0	0	0		0	0		0	0	0	0
R_2^{FW}			0	0	0	0	0	0	0	0	0											
\mathcal{P}			0	0	0	0	0	0	0	0	0											
a_3			0	0	0	0	0	0	0	0	0											
A			0	0	0	0	0	0	0	0	0											
Zcut			0	0	0		0	0	0		0											
$\sqrt{d_{12}}$		0				0	0	0	0	0	0					0	0	0	0	0	0	0
$\sqrt{d_{23}}$																0	0	0	0	0	0	0
KtDR		0				0	0	0	0	0	0											
Q_w																0	0	0	0	0	0	0

- Different scenarios have been tested by grouping different set of variables.
- The performance of the DNN tagger depends on both the number of variables and the information content in the group.
- Found to be 12 variables for W-boson tagging (Group 8) and 13 variables for top-quark tagging (Group 9).

- Similar performance for BDT and DNN multivariate classifiers.
- Large improvement on top-tagging performance by using multivariate classifiers with respect low-level taggers.
- Shower deconstruction (SD) top-tagger better than low-level taggers.
- Worse performance at high $p_{\rm T}$ due to granularity of the calorimeter.

- Performance of the top-tagging studied in data using $t\bar{t}$ events.
 - \rightarrow One top quark decays hadronically and the other semileptonically in both the electron and the muon decay channels.
 - → b-tagged jet required within the top-candidate large-R jet to ensure t/\bar{t} boosted topologies.

- \rightarrow Adequate description of the jet mass and DNN score distributions.
- $\rightarrow t\bar{t}$ modelling uncertainties dominates.

- The performance of top-tagging in the MC is corrected to the one observed in data.
 - \rightarrow As in the *b*-tagging, this is done using scale factors.
 - → Uncertainties on SD estimated by propagating the uncertainties on the subjet $p_{\rm T}$ to the SD score.
 - $\rightarrow\,$ Overall, good agreement on top tagging efficiencies between data and MC across the studied $p_{\rm T}$ range.

Analysis results: $W' \rightarrow tb$

- Theories beyond the Standard Model (SM) involve enhanced symmetries that predict new gauge bosons, usually called W' or Z' bosons.
- Many models such as those with extra dimensions, strong dynamics, composite Higgs, or the Little Higgs predict new vector charged-current interactions, some with preferential couplings to quarks or third-generation particles.
 - \rightarrow Sequential Standard Model (SSM) used to capture main phenomenology.
- For large W' masses, decay products of top quark decay become more collimated, such that, the top quark is reconstructed in a single large-*R* jet.
 - → SD top tagging to identify jets from boosted top-quark decays, whereas b-tagging used to identify jets coming from b-quark.
- Signal bump expected in the top (large-R jet) and b (small-R jet) candidates invariant mass m_{tb}.
- $L = 36.1 \text{ fb}^{-1}$ of data used to perform this search.
 - \rightarrow Work in progress to include all Run 2 data, L = 139 fb⁻¹.

The dominant background from multi-jet production is estimated directly from data using a six-region "2D sideband" method that predicts both the shape and normalisation of m_{tb} distribution.

$$\begin{array}{l} \rightarrow \ N_{\rm A}^{\rm bkg} = R_{\rm A}^{\rm corr} \cdot \frac{(N_{\rm C}^{\rm data} - N_{\rm C}^{\rm tr}) \cdot (N_{\rm D}^{\rm data} - N_{\rm D}^{\rm tr})}{N_{\rm F}^{\rm data} - N_{\rm F}^{\rm tr}} \\ \rightarrow \ N_{\rm B}^{\rm bkg} = R_{\rm B}^{\rm corr} \cdot \frac{(N_{\rm C}^{\rm data} - N_{\rm C}^{\rm tr}) \cdot (N_{\rm E}^{\rm data} - N_{\rm E}^{\rm tr})}{N_{\rm B}^{\rm data} - N_{\rm F}^{\rm tr}} \end{array}$$

- \rightarrow $R_{\rm A}^{\rm corr}$ and $R_{\rm B}^{\rm corr}$ estimated from MC samples.
- Three ortoghonal signal regions are defined based on top-tagging and b-tagging information.

 Several systematic sources taken into account related to jet calibration, b-tagging SFs, top-tagging SFs, multijet background estimation, pile-up and tt modelling.

- To test for the presence of a massive resonance, m_{tb} obtained from signal MC and backgrounds are fit to data using a binned maximum-likelihood approach.
- Systematic uncertainties incorporated into the fit as nuisance parameters with log-normal constraints.
- The p_0 -value estimated using the log-likelihood ratio (LLR) test statistic.
 - $\rightarrow\,$ If no significant excess, upper limits at the 95% CL on the signal production cross-section times branching ratio are derived using the CLs method.

 Several systematic sources taken into account related to jet calibration, b-tagging SFs, top-tagging SFs, multijet background estimation, pile-up and tt modelling.

- To test for the presence of a massive resonance, m_{tb} obtained from signal MC and backgrounds are fit to data using a binned maximum-likelihood approach.
- Systematic uncertainties incorporated into the fit as nuisance parameters with log-normal constraints.
- The p_0 -value estimated using the log-likelihood ratio (LLR) test statistic.
 - $\rightarrow\,$ If no significant excess, upper limits at the 95% CL on the signal production cross-section times branching ratio are derived using the CLs method.

- Exclusion limits derived for right- and left-handed couplings.
- NLO theoretical prediction for W' production computed using ZTOP program.
- For $m(W') \gtrsim 2.0$ TeV, $\sigma \times B > 0.1$ pb excluded.
- Assuming ZTOP parameters (SM couplings), $m(W'_{\rm R})$ $(m(W'_{\rm L})) < 3.0$ (2.85) TeV excluded.

Analysis results: $Z' \rightarrow b\overline{b}$

- Models favouring couplings fo gauge bosons to third generation quarks in general.
 - \rightarrow Different models tested in this search: SSM. DM models with Z' mediator. KK resonances
- $L = 139 \text{ fb}^{-1}$ of data used to perform this search.
- New b-tagging algorithm used for this search: DL1r.
 - \rightarrow Better performance for high $p_{\rm T}$ jets.
- Signal bump expected in the invariant mass of two leading small-*R* jets.
 - \rightarrow Both small-R jets fulfilling 77% b-tagging WP.

• Event display with two high- $p_{\rm T}$ jets; $p_{\rm T} = 3.0$ and 2.9 TeV respectively

Analysis results: $Z' \rightarrow b\overline{b}$

- SR defined by requiring |y^{*}| < 0.8 → contribution from s-channel enhanced.
 Multijet events main background.
 - → Estimated using sliding-window fitting method using a parametric function: $f(x) = p_1(1-x)^{p_2}x^{p_3+p_4 \log x}$.
 - $\rightarrow x = m_{\rm jj}/\sqrt{s}$.
 - → Fit validated in a CR with no *b*-tagging requirement multiplied by the appropiate *b*-tagging efficiencies.
 - → Signal injection and spurius signal tests performed to evaluate the robustness of the background fitting strategy.
- BUMPHUNTER tool to look for local excesses in the m_{jj} distribution.
 - \rightarrow No (significant) local excess was found.
- Jet-related and b-tagging uncertainties propagated to signal templates.

Analysis results: $Z' \rightarrow b\overline{b}$

- SR defined by requiring |y^{*}| < 0.8 → contribution from s-channel enhanced.
 Multijet events main background.
 - → Estimated using sliding-window fitting method using a parametric function: $f(x) = p_1(1-x)^{p_2}x^{p_3+p_4 \log x}$.
 - $\rightarrow x = m_{\rm jj}/\sqrt{s}$.
 - → Fit validated in a CR with no b-tagging requirement multiplied by the appropiate b-tagging efficiencies.
 - → Signal injection and spurius signal tests performed to evaluate the robustness of the background fitting strategy.
- BUMPHUNTER tool to look for local excesses in the m_{jj} distribution.
 - \rightarrow No (significant) local excess was found.
- **SSM** Z' with $m_{Z'} \lesssim 2.8$ TeV excluded.

Analysis results: $Z' \rightarrow t\bar{t}$

- Models including heavy resonances decaying into tt pair are studied, such as, top-color-assisted-technicolor (TC2), two-Higgs-doublet model (2HDM) and Randall-Sundrum (RS) models of warped extra dimensions.
- For large resonance masses, decay products of top and anti-top quark decays become more collimated, leading to final states with two high p_T large-R jets.
 - $\rightarrow\,$ DNN top tagging 80% WP is used to identify jets from boosted top and anti-top quark decays.
 - \rightarrow *b*-tagging requirements applied to VR trackjets found within large-*R* jets.
- Signal bump expected in the invariant mass of the top and anti-top large-R jet candidates, m_{tt}.
- $L = 139 \text{ fb}^{-1}$ of data used to perform this search.

Analysis results: $Z' \rightarrow t\bar{t}$

- Two SR are defined depending on the number of *b*-tagged jets found in the final state $(n_b = 1 \text{ or } 2)$.
 - $\rightarrow\,$ For both SRs (SR1b and SR2b) top-candidates must fulfill 80% top tagger WP.
 - → 51% (90%) background contribution from $t\bar{t}$ SM production in SR1b (SR2b)
 - \rightarrow Remaining background coming from multijet production.
- Background contribution in SRs estimated from fits to parametric

function: $f(x) = p_0(1-x)^{p_1} x^{p_2+p_3 \log x+p_4 \log x^2}$.

- → Fitting function validated using the expected $m_{t\bar{t}}$ in SR from a data-driven estimation of multijet contribution and $t\bar{t}$ MC distribution.
- → Wilk's test to determine the optimal number of parameters to describe the function: most optimal function found for $p_4 = 0.0$.
- $\rightarrow\,$ Spurius signal studies by performing S+B fits on a background only distribution.
- Top tagging SFs plus uncertainties included in the MC predictions.
 - Together with large-*R* jet related uncertainties, *b*-tagging uncertainties.
- BUMPHUNTER tool to look for local excesses in the $m_{t\bar{t}}$ distribution.
 - \rightarrow No (significant) local excess was found.

Analysis results: $Z' \rightarrow t\overline{t}$

BUMPHUNTER tool to look for local excesses in the $m_{t\bar{t}}$ distribution.

- \rightarrow No (significant) local excess was found.
- \rightarrow Global p-values of 0.45 and 0.56 for SR1b and SR2b respectively.
- \rightarrow Local excesses less than 2- σ away from the SM prediction.
- Exclusion limits at 95% CL performed using a test statistic based on the profile likelihood ratio.

Analysis results: $Z' \rightarrow t\bar{t}'$

- Signal bump expected in the invariant mass of the top and anti-top large-*R* jet candidates, *m*_{tt}.
 - \rightarrow No (significant) local excess was found.
 - \rightarrow Global p-values of 0.45 and 0.56 for SR1b and SR2b respectively.
 - \rightarrow Local excesses less than 2- σ away from the SM prediction.
- Exclusion limits at 95% CL performed using a test statistic based on the profile likelihood ratio.
 - → Limits on topcolor-assisted-technicolor model, resulting in the exclusion of Z' masses up to 3.9 and 4.9 TeV for decay widths of 1% and 3%, respectively.

- Searches for heavy resonances decaying into third generation quarks have been presented.
 - → W' → tb with L = 36.1 fb⁻¹; SSM m($W'_{\rm R}$) (m($W'_{\rm L}$)) < 3.0 (2.85) TeV excluded.
 - $\rightarrow Z' \rightarrow b\overline{b}$ with L = 139 fb⁻¹; SSM m(Z') < 2.8 TeV excluded.
 - \to $Z' \to t \bar{t}$ with L = 139 fb^-1; SSM m($Z'_{\rm TC2})$ < 3.9 (4.9) TeV excluded for $\Gamma/m=1\%$ (3%)
- In general, these limits on $m_{W',Z'}$ are relaxed by assuming smaller couplings to SM quarks.
 - → Is there any deep reason to assume $g_{q\bar{q}V'} \approx g_{q\bar{q}V}^{\rm SM}$?. I guess this will depend on the particular theoretical model ...
 - $\rightarrow 2 \mathrm{D}$ limits $(m_{W'},g')$ searching for $W' \rightarrow tb$ using the leptonic decay of the top.
- New techniques included in the *b*-tagging and top-tagging algorithms.
 - \rightarrow Better performance compared to the low level algorithms.
 - \rightarrow Important to be able to properly compute the systematic uncertainties associated to these new WPs.
- A lot of work done in the performance size for a thoroughly estimation of the systematic uncertainties and its correlations associated to jets, top-tagging and *b*-tagging.
 - \rightarrow Important role in the profile likelihood fit.
 - $\rightarrow\,$ A measurement must be always accompanied by its error.

Thank you

Backup

