Domain Wall in Extended Scalar Sectors

Yongcheng Wu Oklahoma State University

2021-02-11

N. Chen, T. Li, YW: 2004.10148 N. Chen, T. Li, Z. Teng, YW: 2006.06913

Related to CP Symmetry

Constraints of Domain Wall in Extended Scalar Sectors

SM + Singlet: cxSM SM + Doublet: 2HDM

Outline

- Introduction
 - Topological Defects
 - Domain Walls
- CP Domain Wall in Extended Scalar Sectors
 - cxSM
 - 2HDM
- Summary

Introduction

- Post-Higgs Era:
 - Higgs Discovery Completes the Standard Model (SM)
 - Unexplained in SM:
 - Dark Matter
 - Baryon Asymmetry in Universe (BAU)
 - Neutrino Masses
 -
- Beyond Standard Model
 - SUSY, Composite,
 - Extended Scalar Sector

Probes of Extended Scalar Sector

Extended Scalar Sector

- Probes:
 - Z-pole measurements
 - SM Higgs couplings measurements
 - Direct resonance searches
- Connection with Cosmology:
 - Phase transitions:
 - 1st Order Phase transition
 - \rightarrow Gravitational wave (GW)
 - Together with CP violation
 →Electroweak Baryogenesis → BAU
 - Topological Defects

Symmetries & Topological Defects

- Symmetry breaking: $\mathcal{G} \to \mathcal{H}, \ \mathcal{M} = \mathcal{G}/\mathcal{H}$
- Vacuum Manifold (\mathcal{M}) and Topological Defects:

Topological Defects:	Requirements:	
Domain Walls	$\pi_0(\mathcal{M}) \neq I$	Disconnected parts
Cosmic Strings	$\pi_1(\mathcal{M}) \neq I$	Path can't shrink to one point
Monopoles	$\pi_2(\mathcal{M}) \neq I$	Surface can't shrink to one point

2/11/21

Symmetries & Topological Defects

- Symmetry breaking: $\mathcal{G} \to \mathcal{H}$
- Vacuum Manifold and Topological Defects:

Topological Defects:	Requirements:	Comments
Domain Walls	$\pi_0(\mathcal{M}) \neq I$	Disconnected parts
Cosmic Strings	$\pi_1(\mathcal{M}) \neq I$	Path shrink to one point
Monopoles	$\pi_2(\mathcal{M}) \neq I$	Surface shrink to one point

T.W.B. Kibble J. Phys. A 9 (1976) 1387

- Simple Examples
 - Domain Walls: Discrete symmetry breaking
 - Cosmic Strings: U(1) Breaking
 - Monopoles: $O(3) \rightarrow O(2)$,

Domain Wall

- Discrete Symmetry spontaneously broken
- Main Characteristics of DW:
 - Surface tension/energy: $\sigma \sim \langle \phi \rangle^3$
 - Wall Thickness: $\delta_w \sim m^{-1} \sim \langle \phi \rangle^{-1}$
- Problem with Domain Wall
 - In Scaling region ($R \sim L \sim t$)
 - Energy density: $\rho_W \sim \frac{\sigma R^2}{R^2 L} \sim \frac{\sigma}{t}$
 - Domination time: (Assuming Radiation Era)

•
$$\rho_w = \mathcal{A} \frac{\sigma}{t} \simeq \frac{3M_P^2}{4t^2} = \rho_c \Rightarrow t_{dom} \simeq \frac{3M_P^2}{4\mathcal{A}\sigma}$$

• $t \simeq 2.93 \times 10^3 \text{ s} \ a^{-1} \left(\frac{\sigma}{t}\right)^{-1}$

•
$$t_{dom} \simeq 2.93 \times 10^3 s \, \mathcal{A}^{-1} \left(\frac{\sigma}{TeV^3} \right)$$

• Equation of state:

 $\sigma < (10 \sim 100 \, MeV)^3$

- $p = \omega \rho$, $\omega = -2/3$, $a \propto t^2$ $\langle \phi \rangle < 10 \sim 100 \, MeV$
- Fluctuation → Excessive anisotropy in CMB (Zeldovich-Kobzarev-Okun Bound)
 - $\langle \phi
 angle < 1~{
 m MeV}$

Zh. Eksp. Teor. Fiz 67 (1974) 3; Sov. Phys. JETP 40 (1974) 1

Radiation Dominant		
$\rho_M \sim a^{-3} \sim \frac{1}{t^{3/2}}$		
$\rho_\gamma \sim a^{-4} \sim \frac{1}{t^2}$		

Avoid DW Problem

- Way to avoid DW problem: Phys. Rept. 121 (1985) 263
 - Formation of DW followed by inflation
 - Symmetry restoration
 - Introduce instability
 - Biased term in Potential: ΔV
- Evolution Mainly depends on
 - Tension: σ
 - Tension force: $f_T = \mathcal{A} \frac{\sigma}{R}$
 - Biased Term: ΔV
 - Pressure force: $f_p \sim \Delta V$
- Effects of Biased Term:
 - Bias between two quasi degenerate vacua
 - Pressure force \rightarrow Collapse of DW

10

Bias between Two Vacua

- Too large bias, no DW formed
 - $\frac{p_+}{p_-} \simeq \exp\left(-\frac{\Delta V}{V_0}\right)$
 - Percolation Threshold p_c :
 - For 3-d simple cubic lattice system, $p_c = 0.311$
 - $|\Delta V| < 0.795 V_0$

Phys. Rept. 54 (1979) 1

Collapse of DW

- Collapse Time: Universe 3 (2017) 2, 40
 - Tension force on the DW: $f_T \sim \frac{\sigma}{R} \sim \frac{\sigma}{t}$
 - ΔV induce pressure force: $f_p \sim \Delta V$
 - Collapse time: When pressure force dominates

•
$$f_V = C_{ann} f_T \Rightarrow t_{ann} = C_{ann} \frac{\mathcal{A}\sigma}{\Delta V}$$

• $t_{ann} \simeq 6.58 \times 10^{-4} s C_{ann} \mathcal{A} \left(\frac{\sigma}{TeV^3}\right) \left(\frac{\Delta V}{MeV^4}\right)^{-1}$
• $T_{ann} \simeq 3.41 \times 10^{-2} \ GeV \ C_{ann}^{-1/2} \mathcal{A}^{-1/2} \left(\frac{g_*}{10}\right)^{-1/4} \left(\frac{\sigma}{TeV^3}\right)^{-1/2} \left(\frac{\Delta V}{MeV^4}\right)^{1/2}$

- Avoid Energy dominant
 - $t_{ann} < t_{dom}$
 - $\Delta V^{1/4} > 2.18 \times 10^{-5} \ GeV \ C_{ann}^{1/4} \mathcal{A}^{1/2} \left(\frac{\sigma}{TeV^3}\right)^{1/2}$
- Avoid Ruin BBN:
 - $t_{ann} \leq \mathcal{O}(0.01) s$

•
$$\Delta V^{1/4} > 5.07 \times 10^{-4} GeV C_{ann}^{1/4} \mathcal{A}^{1/4} \left(\frac{\sigma}{TeV^3}\right)^{1/4}$$

- Naïve Estimation: Universe 3 (2017) 2, 40
 - Quadrupole Formula: $P \simeq G \ \overrightarrow{Q} \overrightarrow{Q}$

•
$$\ddot{Q} \sim \frac{MR^2}{t^3} \sim \frac{\mathcal{A}\sigma R^2 R^2}{t^3} \sim \mathcal{A}\sigma t$$

• $\rho_{gw} \sim \frac{Pt}{R^3} \sim \frac{P}{t^2} \sim G\mathcal{A}^2\sigma^2$

• Numerical Simulation:

•
$$\tilde{\epsilon}_{gw} \equiv \frac{1}{G\mathcal{A}^2\sigma^2} \left(\frac{d\rho_{gw}}{d\ln k}\right)_{peak} \simeq 0.7$$

$$\tilde{\epsilon}_{gw} \equiv \frac{1}{G\mathcal{A}^2 \sigma^2} \left(\frac{d\rho_{gw}}{d\ln k}\right)_{peak} \simeq 0.7$$

$$Peak Amplitude$$

$$\cdot \left(\Omega_{gw}\right)_{peak} = \frac{1}{\rho_c} \frac{d\rho_{gw}}{d\ln k} \sim \frac{1}{\rho_c} \left(\frac{a(t_{ann})}{a(t_0)}\right)^4 \left(\frac{d\rho_{gw}(t_{ann})}{d\ln k}\right)_{peak}$$

$$\cdot \left(\Omega_{gw}h^2\right)_{peak} \simeq 7.2 \times 10^{-18} \tilde{\epsilon}_{gw} \mathcal{A}^2 \left(\frac{g_{*s}(T_{ann})}{10}\right)^{-4/3} \left(\frac{\sigma}{TeV^3}\right)^2 \left(\frac{T_{ann}}{10^{-2}GeV}\right)^{-4}$$

$$\cdot \left(\Omega_{gw}h^2\right)_{peak} \simeq 5.3 \times 10^{-20} \tilde{\epsilon}_{gw} \mathcal{A}^2 C_{ann}^2 \left(\frac{g_{*s}(T_{ann})}{10}\right)^{-4/3} \left(\frac{g_{*}(T_{ann})}{10}\right) \left(\frac{\sigma}{TeV^3}\right)^4 \left(\frac{\Delta V}{MeV^4}\right)^{-2}$$

• Peak Frequency

$$\begin{split} & \cdot f_{peak} \simeq \left(\frac{a(t_{ann})}{a(t_0)}\right) H(t_{ann}) \\ & \cdot f_{peak} \simeq 1.1 \times 10^{-9} Hz \, \left(\frac{g_*(T_{ann})}{10}\right)^{1/2} \left(\frac{g_{*s}(T_{ann})}{10}\right)^{-1/3} \left(\frac{T_{ann}}{10^{-2} GeV}\right) \\ & \cdot f_{peak} \simeq 3.75 \times 10^{-9} Hz \, \mathcal{A}^{-1/2} C_{ann}^{-1/2} \left(\frac{g_*(T_{ann})}{10}\right)^{1/4} \left(\frac{g_{*s}(T_{ann})}{10}\right)^{-1/3} \left(\frac{\sigma}{TeV^3}\right)^{-1/2} \left(\frac{\Delta V}{MeV^4}\right)^{1/2} \end{split}$$

Universe 3 (2017) 2, 40

Brief Summary of DW Constraints

- Consider in Situation where we do still have DW formation
 - $\Delta V < 0.795 V_0$
- Avoid Energy dominant:
 - $\Delta V^{1/4} > 2.18 \times 10^{-5} \ GeV \ C_{ann}^{1/4} \mathcal{A}^{1/2} \left(\frac{\sigma}{TeV^3}\right)^{1/2}$
- Avoid Ruin BBN:

•
$$\Delta V^{1/4} > 5.07 \times 10^{-4} GeV C_{ann}^{1/4} \mathcal{A}^{1/4} \left(\frac{\sigma}{TeV^3}\right)^{1/4}$$

- Possible GW Signals from Collapsing DW
 - High scale

SM + Complex Singlet (cxSM)

- The field Contents:
 - SM Doublet + complex singlet
- Most general Potential:

 $V(\Phi, \mathbb{S}) = \mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} + \frac{\delta_{2}}{2} |\Phi|^{2} |\mathbb{S}|^{2} + \frac{b_{2}}{2} |\mathbb{S}|^{2} + \frac{d_{2}}{4} |\mathbb{S}|^{4} + \left(\frac{\delta_{1}}{4} |\Phi|^{2} \mathbb{S} + \frac{\delta_{3}}{4} |\Phi|^{2} \mathbb{S}^{2} + c.c.\right) + \left(a_{1}\mathbb{S} + \frac{b_{1}}{4}\mathbb{S}^{2} + \frac{c_{1}}{6}\mathbb{S}^{3} + \frac{c_{2}}{6}\mathbb{S}|\mathbb{S}|^{2} + \frac{d_{1}}{8}\mathbb{S}^{4} + \frac{d_{3}}{8}\mathbb{S}^{2}|\mathbb{S}|^{2} + c.c.\right),$ Four kinds coupling with different U(1) Charge

At least two terms from different kinds are needed to achieve SCPV

Phys.Rev.D 86 (2012)075007

SCPV and ECPV

• SCPV Potential:

$$V(\Phi, \mathbb{S})$$

 $= \mu^2 |\Phi|^2 + \lambda |\Phi|^4 + \frac{\delta_2}{2} |\Phi|^2 |\mathbb{S}|^2 + \frac{b_2}{2} |\mathbb{S}|^2 + \frac{d_2}{4} |\mathbb{S}|^4$
 $+ \left(\frac{b_1}{4} \mathbb{S}^2 + \frac{c_1}{6} \mathbb{S}^3 + c.c.\right)$

- b_1 , c_1 Real for SCPV
- Symmetries: CP: $\mathbb{S} \to \mathbb{S}^* \checkmark$
- Vacuum Manifold:

 $\mathcal{M} = S^3 \otimes S^0$

- ECPV Deviation
 - Imaginary component of b_1 , c_1

Spectrum and Parameters

• SCPV Potential:

$$V(\Phi, \mathbb{S}) = \mu^2 |\Phi|^2 + \lambda |\Phi|^4 + \frac{\delta_2}{2} |\Phi|^2 |\mathbb{S}|^2 + \frac{b_2}{2} |\mathbb{S}|^2 + \frac{d_2}{4} |\mathbb{S}|^4 + \left(\frac{b_1}{4} \mathbb{S}^2 + \frac{c_1}{6} \mathbb{S}^3 + c.c.\right)$$

• $\Phi = (0, v + h)^T, \langle \mathbb{S} \rangle = v_s e^{i\alpha} + S + iA = v_s^r + iv_s^i + S + iA$

$$\mathcal{M}^{2} = \begin{pmatrix} 2\lambda v^{2} & \frac{\delta_{2}}{2} vv_{S} & \frac{\delta_{2}}{2} vv_{A} \\ \frac{\delta_{2}}{2} vv_{S} & \frac{2d_{2}v_{S}^{4} + \sqrt{2}c_{1}(v_{S}^{2} + v_{A}^{2})}{4v_{S}} & \frac{d_{2}v_{S} - \sqrt{2}c_{1}}{2} v_{A} \\ \frac{\delta_{2}}{2} vv_{A} & \frac{d_{2}v_{S} - \sqrt{2}c_{1}}{2} v_{A} & \frac{d_{2}}{2} v_{A}^{2} \end{pmatrix} \\ \mathcal{R}^{T} \mathcal{M}^{2} \underline{\mathcal{R}} = diag(m_{1}^{2}, m_{2}^{2}, m_{3}^{2}) & Physical Parameters: \\ v, v_{S}^{r}, v_{S}^{i}, m_{1,2,3}, \alpha_{1,2,3} \end{pmatrix}$$

 (v_{s}, α)

$\mathcal{M}=S^3\otimes S^0$

• Equation of Motion

$$\frac{d^2}{dz^2}\vec{\phi} = \vec{\nabla}_{\phi}V(\vec{\phi}), \qquad \vec{\phi} \equiv (\phi_h, \phi_S, \phi_A)$$
$$V(\phi_h, \phi_S, \phi_A) = \frac{\mu^2}{2}\phi_h^2 + \frac{\lambda}{4}\phi_h^4 + \frac{b_2 + b_1}{4}\phi_S^2 + \frac{b_2 - b_1}{4}\phi_A^2$$
$$+ \frac{\sqrt{2}c_1}{12}\phi_S(\phi_S^2 - 3\phi_A^2) + \frac{d_2}{16}(\phi_S^2 + \phi_A^2)^2 + \frac{\delta_2}{8}\phi_h^2(\phi_S^2 + \phi_A^2)$$

• Boundary condition:

$$\vec{\phi}(z=\pm\infty)=(v,v_s^r,\pm v_s^i)$$

• Equation of Motion

$$\frac{d^2}{dz^2}\vec{\phi} = \vec{\nabla}_{\phi}V(\vec{\phi})$$

Equivalent to particle rolling in potential well U = -V

• Equivalent to particle rolling in potential well U = -V $\frac{d^2}{dz^2}\vec{\phi} = \vec{\nabla}_{\phi}V(\vec{\phi}) \implies \frac{d^2}{dt^2}\vec{r} = -\vec{\nabla}U \equiv \vec{F}$ Runge-Kutta $V(\phi) = \frac{1}{2}\lambda(\phi^2 - \eta^2)^2$ $\frac{d}{dz}\phi = \sqrt{2|\Delta V|} \quad \sim \quad \frac{1}{2}mv^2 = \Delta U$ U = -VDomain wall samples: $\lambda = 2.0, \eta = 1.0$ 1.0 0.5 $\phi(z) = \eta \tanh\left(\frac{z}{s}\right)$ $\frac{\sigma}{s}$ 0.0 $\delta = \frac{1}{\sqrt{\lambda}\eta}$ -0.5 $\sigma \sim V_0 \cdot \delta \sim \lambda \eta^4 \cdot \frac{1}{\sqrt{\lambda}\eta} \sim \sqrt{\lambda} \eta^3$ -1.0-55 0 z 2/11/21 ycwu0830@gmail.com 21

 $\phi(z=\pm\infty)=(v,v_s^r,\pm v_s^i)$

Path Deformation 1109.4189

• Equivalent to particle rolling in potential well U = -V $\frac{d^2}{dz^2}\vec{\phi} = \vec{\nabla}_{\phi}V(\vec{\phi}) \implies \frac{d^2}{dt^2}\vec{r} = -\vec{\nabla}U \equiv \vec{F}$

Path Deformation

Biased Terms from ECPV

- Potential $V(\Phi, S) = \mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} + \frac{\delta_{2}}{2} |\Phi|^{2} |S|^{2} + \frac{b_{2}}{2} |S|^{2} + \frac{d_{2}}{4} |S|^{4} + \left(\frac{b_{1}}{4}S^{2} + \frac{c_{1}}{6}S^{3} + c.c.\right)$
- ECPV
 - Imaginary component of b_1, c_1
- Biased Terms:

•
$$V_{bias} = -\frac{1}{12}\phi_A \left(6\Im b_1\phi_s + \sqrt{2}\Im c_1(3\phi_s^2 - \phi_A^2) \right)$$

$$|\Delta \mathbf{V}| \approx \frac{1}{6} v_s^i \left(6\Im b_1 v_s^r + \sqrt{2} \Im c_1 \left(3(v_s^r)^2 - \left(v_s^i \right)^2 \right) \right)$$

Constraints in cxSM

GW from DW

Constraints on Tension and Bias

Constraints in cxSM

SM + Extra Doublet (2HDM)

- Field Content: $\Phi_1 = \begin{pmatrix} H_1^+ \\ \frac{1}{\sqrt{2}}(\varphi_1 + H_1^0 + iA_1^0) \end{pmatrix}, \quad \Phi_2 = e^{i\Theta} \begin{pmatrix} H_2^+ \\ \frac{1}{\sqrt{2}}(\varphi_2 + H_2^0 + iA_2^0) \end{pmatrix}$ • Two Scalar Doublet
- The potential:

$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} - (m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{\lambda_{1}}{2} |\Phi_{1}|^{4} + \frac{\lambda_{2}}{2} |\Phi_{2}|^{4} + \lambda_{3} |\Phi_{1}|^{2} |\Phi_{2}|^{2} + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \left[\frac{\lambda_{5}}{2} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c. \right].$$
case:

- SCPV case:
 - Starting with all real parameters
 - Symmetry: CP: $\Phi_1 \rightarrow \Phi_1^*, \Phi_2 \rightarrow \Phi_2^*$
- ECPV case:
 - Introducing $\Im \lambda_5$ (or $\Im m_{12}^2$)

$$\begin{array}{l} \text{Mass Eigenstates & Parameters} \\ \begin{pmatrix} H_{1}^{\pm} \\ H_{2}^{\pm} \end{pmatrix} = \begin{pmatrix} c_{\beta} - s_{\beta} \\ s_{\beta} \ c_{\beta} \end{pmatrix} \cdot \begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} \quad \begin{array}{l} \text{Tan } \beta = \frac{|v_{2}|}{v_{1}} \\ \mathcal{R} = \mathcal{R}_{23}(\alpha_{c}) \cdot \mathcal{R}_{13}(\alpha_{b}) \cdot \mathcal{R}_{12}(\alpha + \frac{\pi}{2}) \\ \begin{pmatrix} A_{1} \\ A_{2} \end{pmatrix} = \begin{pmatrix} c_{\beta} - s_{\beta} \\ s_{\beta} \ c_{\beta} \end{pmatrix} \cdot \begin{pmatrix} G^{0} \\ A^{0} \end{pmatrix} \quad = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{\alpha_{c}} & s_{\alpha_{c}} \\ 0 - s_{\alpha_{c}} & c_{\alpha_{c}} \end{pmatrix} \cdot \begin{pmatrix} c_{\alpha_{b}} & 0 & s_{\alpha_{b}} \\ 0 & 1 & 0 \\ -s_{\alpha_{b}} & 0 & c_{\alpha_{b}} \end{pmatrix} \cdot \begin{pmatrix} -s_{\alpha} & c_{\alpha} & 0 \\ -c_{\alpha} - s_{\alpha} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \begin{pmatrix} h_{1} \\ h_{2} \\ h_{3} \end{pmatrix} = \mathcal{R} \cdot \begin{pmatrix} H_{1} \\ H_{2} \\ A^{0} \end{pmatrix} \quad = \begin{pmatrix} -s_{\alpha}c_{\alpha_{b}} & c_{\alpha}c_{\alpha_{c}} - s_{\alpha}c_{\alpha_{c}} - c_{\alpha}s_{\alpha_{b}}s_{\alpha_{c}} \\ s_{\alpha}s_{\alpha_{b}}c_{\alpha_{c}} + c_{\alpha}s_{\alpha_{c}} & s_{\alpha}s_{\alpha_{c}} - c_{\alpha}s_{\alpha_{b}}s_{\alpha_{c}} \\ s_{\alpha}s_{\alpha_{b}}c_{\alpha_{c}} + s_{\alpha}s_{\alpha_{c}} & s_{\alpha}s_{\alpha_{c}} - c_{\alpha}s_{\alpha_{b}}s_{\alpha_{c}} \\ s_{\alpha}s_{\alpha_{b}}c_{\alpha_{c}} + s_{\alpha}s_{\alpha_{c}} & s_{\alpha}s_{\alpha_{c}} \\ s_{\alpha}s_{\alpha_{c}}s_{\alpha_{c}} + s_{\alpha}s_{\alpha_{c}} \\ s_{\alpha}s_{\alpha_{c}}s_{\alpha_{c}} & s_{\alpha}s_{\alpha_{c}} \\ s_{\alpha}s_{\alpha}s_{\alpha_{c}}s_{\alpha_{c}} & s_{\alpha}s_{\alpha_{c}} \\ s_{\alpha}s_{\alpha}s_{\alpha_{c}}s_{\alpha_{c}} & s$$

 γ

Constraints from DW

• To avoid ruin BBN

CPV and EDM

• Couplings with CPV

$$\mathcal{L} = \sum_{i=1}^{3} \left[-m_f \left(c_{f,i} \bar{f} f + \tilde{c}_{f,i} \bar{f} i \gamma_5 f \right) + a_i \left(2m_W^2 W_\mu W^\mu + m_Z^2 Z_\mu Z^\mu \right) \right] \frac{h_i}{v}$$

• Contributions to EDM:

- ACME-II:
 - $\left|\frac{d_e}{e}\right| \le 1.1 \times 10^{-29} \, cm$

- W^{\pm}, H^{\pm} W^{\pm}, H^{\pm} W^{\pm}, H^{\pm} H^{\pm} H^{\pm}
- ACME-III: • $\left|\frac{d_e}{e}\right| \le 1.0 \times 10^{-30} cm$

Summary

- Extended Scalar Sector \rightarrow Topological Defects
- CP DW is discussed in cxSM and 2HDM
 - cxSM:
 - GW signal from Collapsing DW is sensitive to the tiny CPV parameters, and high scales ($v_s \sim 10 TeV, m_s \sim 10 TeV$)
 - 2HDM:
 - GW signal is not detectable due to low scale
 - Constraints from CP DW is complementary with EDM measurement

Backups

- No Biased Yet:
 - Two forces:
 - Tension force

•
$$f_T \sim \frac{\sigma}{R}$$

• Friction force

•
$$f_f \sim \Delta p \cdot n \sim vT^4$$

- Drop dramatically when temperature is less than the mass of other particles
 - Entering Scaling Regime
- Scaling Regime

•
$$R \sim L \sim H^{-1} \sim t$$

•
$$\rho_W \sim \frac{\sigma R^2}{R^2 L} \sim \frac{\sigma}{t} \Rightarrow \rho_W = \mathcal{A} \frac{\sigma}{t} \qquad \qquad \mathcal{A} \simeq 0.8 \pm 0.1$$

•
$$H^2 = \frac{\rho_c}{3M_P^2} \simeq \frac{1}{4t^2} \Rightarrow \rho_c = \frac{3M_P^2}{4t^2}$$

• Dominant time:

•
$$\rho_W = \mathcal{A} \frac{\sigma}{t} \simeq \frac{3M_P^2}{4t^2} = \rho_c \Rightarrow t_{dom} \simeq \frac{3M_P^2}{4\mathcal{A}\sigma}$$

•
$$M_P \simeq 2.435 \times 10^{18} \text{ GeV}$$

•
$$\mathcal{A} \simeq 0.8$$

•
$$t_{dom} \simeq 2.93 \times 10^3 s \ \mathcal{A}^{-1} \left(\frac{\sigma}{TeV^3}\right)^{-1}$$

- With Biased Terms:
 - Another force:
 - Pressure force: $f_V \sim \Delta V$
 - Collapse of DW happens when pressure force dominate
 - $f_V \gtrsim f_T = \mathcal{A} \frac{\sigma}{t}$
 - Annihilation time:

•
$$f_V = C_{ann} f_T \Rightarrow t_{ann} = C_{ann} \frac{A\sigma}{\Delta V}$$

• $t_{ann} \simeq 6.58 \times 10^{-4} s C_{ann} A \left(\frac{\sigma}{TeV^3}\right) \left(\frac{\Delta V}{MeV^4}\right)$

• Convert to temperature:

•
$$T_{ann} \simeq 3.41 \times 10^{-2} \ GeV \ C_{ann}^{-1/2} \mathcal{A}^{-1/2} \left(\frac{g}{10}\right)^{-1/4} \left(\frac{\sigma}{TeV^3}\right)^{-1/2} \left(\frac{\Delta V}{MeV^4}\right)^{1/2}$$

-1

$$C_{ann} \simeq 2 - 5$$

ycwu0830@gmail.com

- Avoid Overclose
 - $t_{ann} < t_{dom}$
 - $\Delta V^{1/4} > 2.18 \times 10^{-5} \ GeV \ C_{ann}^{1/4} \mathcal{A}^{1/2} \left(\frac{\sigma}{TeV^3}\right)^{1/2}$
 - Or equivalently

•
$$T_{ann} > 1.62 \times 10^{-5} \ GeV \ \mathcal{A}^{1/2} \left(\frac{g_*}{10}\right)^{-1/4} \left(\frac{\sigma}{TeV^3}\right)^{1/2}$$

- Avoid Ruin BBN:
 - If significant fraction of the energy density of DW is converted into energetic particles:
 - $t_{ann} \lesssim 0.01 s$
 - Equivalently

•
$$\Delta V^{1/4} > 5.07 \times 10^{-4} GeV C_{ann}^{1/4} \mathcal{A}^{1/4} \left(\frac{\sigma}{TeV^3}\right)^{1/4}$$

- Naïve Estimation:
 - $E_{gw} \simeq G \frac{M^2}{R}$
 - $M \simeq \mathcal{A} \sigma R^2$
 - $\rho_{gw} \simeq \frac{E_{gw}}{R^3} \simeq G \mathcal{A}^2 \sigma^2$
- Second Estimation:
 - GW radiation power:

•
$$P \simeq G \ddot{Q}\ddot{Q}$$

• $\ddot{Q} \sim \frac{\mathcal{A}\sigma R^2 R^2}{t^3} \sim \mathcal{A}\sigma t$
• $\rho_{gw} \simeq \frac{Pt}{R^3} \simeq \frac{P}{t^2} \simeq G \mathcal{A}^2 \sigma^2$

• From numerical simulation:

•
$$\tilde{\epsilon}_{gw} \equiv \frac{1}{G\mathcal{A}^2\sigma^2} \left(\frac{d\rho_{gw}}{d\ln k}\right)_{peak} \simeq 0.7 \pm 0.4$$

• GW spectrum:

$$\Omega_{gw}(t,f) = \frac{1}{\rho_c(t)} \frac{d\rho_{gw}(t)}{d\ln k}$$

• At annihilation time

•
$$\Omega_{gw}(t_{ann})_{peak} = \frac{1}{\rho_c(t_{ann})} \left(\frac{d\rho_{gw}(t_{ann})}{d\ln k}\right)_{peak} = \frac{8\pi G}{3H^2(t_{ann})} \tilde{\epsilon}_{gw} G \mathcal{A}^2 \sigma^2 = \frac{8\pi \tilde{\epsilon}_{gw} G^2 \mathcal{A}^2 \sigma^2}{3H^2(t_{ann})}$$

• At current time

$$\begin{split} \bullet \ \Omega_{gw}(t_0)h^2(t_0)_{peak} &= \frac{\rho_c(t_{ann})}{\rho_c(t_0)} \left(\left(\frac{a(t_{ann})}{a(t_0)} \right)^4 \Omega_{gw}(t_{ann})_{peak} \right) h^2(t_0) \\ &= \frac{\rho_\gamma(t_0)}{\rho_c(t_0)} h^2 \frac{\rho_\gamma(t_{ann})}{\rho_\gamma(t_0)} \left(\frac{g_{*s}(T_0)}{g_{*s}(T_{ann})} \right)^{4/3} \left(\frac{T_0}{T_{ann}} \right)^4 \Omega_{gw}(t_{ann})_{peak} \\ &= \Omega_{rad} h^2 \left(\frac{g_*(T_{ann})}{g_*(T_0)} \right) \left(\frac{g_{*s}(T_0)}{g_{*s}(T_{ann})} \right)^{4/3} \Omega_{gw}(t_{ann})_{peak} \\ \bullet \ \Omega_{gw} h^2(t_0)_{peak} \simeq 7.2 \times 10^{-18} \tilde{\epsilon}_{gw} \mathcal{A}^2 \left(\frac{g_{*s}(T_{ann})}{10} \right)^{-4/3} \left(\frac{\sigma}{TeV^3} \right)^2 \left(\frac{T_{ann}}{10^{-2} GeV} \right)^{-4} \end{split}$$

$$H^2 = \frac{8\pi G}{3}\rho = \frac{8\pi G}{3}\frac{\pi^2}{30}g_*T^4$$

Entropy Conservation:
$$sa^3 = Const$$

 $s = \frac{2\pi^2}{45}g_{*s}T^3$

- The peak frequency:
 - Related to the Hubble parameter and redshifted to today

•
$$f_{peak} \simeq \left(\frac{a(t_{ann})}{a(t_0)}\right) H(t_{ann}) = \left(\frac{g_{*s}(T_0)}{g_{*s}(T_{ann})}\right)^{1/3} \left(\frac{T_0}{T_{ann}}\right) \sqrt{\frac{8\pi G}{3} \frac{\pi^2}{30}} g_*^{1/2} T_{ann}^2$$

• $f_{peak} \simeq 1.1 \times 10^{-9} Hz \left(\frac{g_{*}(T_{ann})}{10}\right)^{1/2} \left(\frac{g_{*s}(T_{ann})}{10}\right)^{-1/3} \left(\frac{T_{ann}}{10^{-2} GeV}\right)$

- The cutoff frequency:
 - Related to the width of DW

•
$$f_{\delta} \simeq \left(\frac{a(t_{ann})}{a(t_0)}\right) \delta^{-1} = 2.6 \times 10^{16} Hz \left(\frac{g_{*s}(T_{ann})}{10}\right)^{-1} \left(\frac{T_{ann}}{10^{-2} GeV}\right)^{-1} \left(\frac{\delta^{-1}}{1TeV}\right)$$

- From numerical simulations:
 - GW spectrum behave as $\Omega_{gw} \propto f^{-1}$, for $f_{peak} < f < f_{\delta}$

ycwu0830@gmail.com

 $H^2 = \frac{8\pi G}{3}\rho = \frac{8\pi G}{3}\frac{\pi^2}{30}g_*T^4$

Entropy Conservation: $sa^3 = Const$

 $s = \frac{2\pi^2}{45}g_{*s}T^3$

