

Parton contents of a lepton at high energies

Yang Ma

Pittsburgh Partcile-physics, Astrophysics, and Cosmology Center, Department of Physics and Astronomy, University of Pittsburgh, PA 15260, USA

April 15, 2021

In collaboration with Tao Han and Keping Xie

[T. Han, Y. Ma, K.Xie 2007.14300]

[T. Han, Y. Ma, K.Xie 2103.09844]

A little bit backaground (I): What is "parton"?

Recall the hadron colliders: pp collision at the Tevatron or the LHC

Factorization formalism: PDFs \otimes partonic cross sections

$$\sigma(AB \to X) = \sum_{a,b} \int \mathrm{d}x_a \mathrm{d}x_b f_{a/A}(x_a, Q) f_{b/B}(x_b, Q) \hat{\sigma}(ab \to X)$$

■ *a*, *b* are the "partons" from the beam particles *A* and *B*.

• $f_{a/A}$, $f_{b/B}$ are the probabilities to find a parton a (b) from the beam particle A (B) with a momentum fraction x_a (x_b).

A little bit backaground (II): PDFs of a lepton

"Equivalent photon approximation (EPA)" [C. F. von Weizsacker, Z. Phys. 88, 612 (1934)] Treat photon as a parton constituent in the electron [E. J. Williams, Phys. Rev. 45, 729 (1934)]

$$\sigma(\ell^{-} + a \to \ell^{-} + X) = \int \mathrm{d}x f_{\gamma/\ell} \hat{\sigma}(\gamma a \to X)$$

$$f_{\gamma/\ell, \text{EPA}}(x_{\gamma}, Q^{2}) = \frac{\alpha}{2\pi} \frac{1 + (1 - x_{\gamma})^{2}}{x_{\gamma}} \ln \frac{Q^{2}}{m_{\ell}^{2}} \frac{f_{\gamma/\ell}}{e_{\text{Extra terms:}}}$$

Applications at lepton colliders

Production cross sections

[Frixione, Mangano, Nason, Ridolfi 2103.09844] [Budnev, Ginzburg, Meledin, Serbo, Phys. Rept.(1975)]

$$\sigma(\ell^+\ell^- \to F + X) = \int_{\tau_0}^1 d\tau \sum_{ij} \frac{d\mathscr{L}_{ij}}{d\tau} \ \hat{\sigma}(ij \to F), \ \tau = \hat{s}/s$$

Partonic luminosities

$$\frac{d\mathscr{L}_{ij}}{d\tau} = \frac{1}{1+\delta_{ij}} \int_{\tau}^{1} \frac{d\xi}{\xi} \left[f_i(\xi, Q^2) f_j\left(\frac{\tau}{\xi}, Q^2\right) + (i \leftrightarrow j) \right]$$

An anatomical study: Why EWPDF?

Fixed order (FO) VS EPA for $e^-\mu^+ \rightarrow e^- W^+ \overline{\nu}_{\mu}$

Feynman diagrams

- Q: Is it safe to consider only photon ?
- Things to know:
 - Gauge invariance requires all diagrams
 - Unphysical results appear at high energies

Need more PDFs, we should go beyond EPA !

- Q: Why EPA works?
- A: Forward γ dominates

A possible high-energy lepton (muon) collider

Why muon colliders?

- Leptons are the ideal probes of short-distance physics
 - Nearly all the energy is stored in the colliding partons
 - High-energy physics probed with much smaller collider energy
- Electrons radiate too much
- A *s*-channel Higgs factory: Direct measurements on y_{μ} and Γ_{H}
- Multi-TeV muon colliders:
 - \blacksquare Center of mass energy $3-15~{\rm TeV}$ and the more speculative ${\it E}_{\rm cm}=30~{\rm TeV}$
 - Luminosity: $\mathscr{L} = (E_{\rm cm}/10 \ {\rm TeV})^2 \times 10 {\rm ab}^{-1}$
 - \blacksquare New particle mass coverage $M \sim (0.5-1) E_{\rm cm}$
 - Great accuracies for WWH, WWHH, H³, H⁴

• • • •

Muon Collider Physics Potential Pillars

Direct search of heavy particles

SUSY-inspired, WIMP, VBF production, 2->1 High rate indirect probes Higgs single and selfcouplings, rare Higgs decays, exotic decays High energy probes

difermion, diboson, EFT, Higgs compositeness

A high-energy lepton collider at first glance (I)

What do people expect from a high-energy lepton collider?

[T. Han, Y. Ma, K.Xie 2007.14300]

Some "commonsense":

- The annihilations decrease as 1/s.
- \blacksquare ISR needs to be considered, which can give over 10% enhancement.
- The fusions increase as $\ln^p(s)$, which take over at high energies.
- The large collinear logarithm $\ln(s/m_\ell^2)$ needs to be resummed, set $Q=\sqrt{\hat{s}}/2$,
- $\gamma\gamma
 ightarrow W^+ W^-$ production has the largest cross section.

A high-energy lepton collider at first glance (II)

What are the dominant processes at a high-energy lepton collider?

- Leading-order: $\ell^+\ell^- \to \ell^+\ell^-, \tau^+\tau^-, q\bar{q}, W^+W^-$, and $\gamma\ell \to \gamma\ell$
- $\gamma\gamma$ scatterings: $\gamma\gamma \rightarrow \tau^+\tau^-, \, q \, \bar{q}, \, W^+W^-$

Need some cuts:

- Detector angle: $\theta_{cut} = 5^{\circ} (10^{\circ}) \iff |\eta| < 3.13(2.44)$
- Threshold: $m_{ij} > 20 \text{ GeV}$
- \blacksquare Need a p_{T} cut to separate from the nonperturbative hadronic production

[Drees and Godbole, PRL 67, 1189; Chen, Barklow, and Peskin, hep-ph/9305247; T. Barklow, etal, LCD-2011-020]

$$p_T > \left(4 + \sqrt{s}/3 \,\mathrm{TeV}\right) \,\mathrm{GeV}$$

Go beyond the EPA at high-energy lepton colliders

We have been doing:

We will add:

- [T. Han, Y. Ma, K.Xie 2007.14300, 2103.09844]
- Above μ_{QCD} : QED \otimes QCD q/g emerge $e^{e^{it}}$ f^{f} $f^{$
- Above $\mu_{\rm EW} = M_Z$: EW \otimes QCD EW partons emerge

In the end, everything is parton, i.e. the full SM PDFs.

The PDF evolution: DGLAP

The DGLAP equations

$$\frac{\mathrm{d}f_i}{\mathrm{d}\log Q^2} = \sum_I \frac{\alpha_I}{2\pi} \sum_j P^I_{ij} \otimes f_j$$

The initial conditions

$$f_{\ell/\ell}(x,m_\ell^2) = \delta(1-x)$$

Three regions and two matchings

$$\begin{array}{l} \mathbf{m}_{\ell} < Q < \mu_{\rm QCD}: \mbox{ QED } \\ \mathbf{Q} = \mu_{\rm QCD} \lesssim 1 \ \mbox{GeV}: \mbox{$f_q \propto P_{q\gamma} \otimes f_{\gamma}, f_g = 0$} \\ \mathbf{\mu}_{\rm QCD} < Q < \mu_{\rm EW}: \ \mbox{QED} \otimes \mbox{QCD } \\ \mathbf{Q} = \mu_{\rm EW} = M_Z: \mbox{$f_v = f_t = f_W = f_Z = f_{\gamma Z} = 0$} \\ \mathbf{\mu}_{\rm EW} < Q: \ \mbox{EW} \otimes \mbox{QCD.} \\ \begin{pmatrix} f_B \\ f_{W^3} \\ f_{BW^3} \end{pmatrix} = \begin{pmatrix} c_W^2 & s_W^2 & -2c_W s_W \\ s_W^2 & c_W^2 & 2c_W s_W \\ c_W s_W & -c_W s_W & c_W^2 - s_W^2 \end{pmatrix} \begin{pmatrix} f_{\gamma} \\ f_Z \\ f_{\gamma Z} \end{pmatrix}$$

We work in the (B, W) basis. The technical details can be referred to the backup slides.

Solving the DGLAP: Singlet and Non-singlet PDFs

The singlets

$$f_L = \sum_{i=e,\mu,\tau} (f_{\ell_i} + f_{\bar{\ell}_i}), \ f_U = \sum_{i=u,c} (f_{u_i} + f_{\bar{u}_i}), \ f_D = \sum_{i=d,s,b} (f_{d_i} + f_{\bar{d}_i})$$

The non-singlets

- \blacksquare The only non-trivial singlet $f_{e,NS}=f_e-f_{\bar{e}}$
- the leptons

$$f_{\ell_i,NS} = f_{\ell_i} - f_{\bar{\ell}_i} (i = 2, 3), \ f_{\ell,12} = f_{\bar{e}} - f_{\bar{\mu}}, \ f_{\ell,13} = f_{\bar{e}} - f_{\bar{\tau}};$$

the up-type quarks

$$f_{u_i,NS} = f_{u_i} - f_{\bar{u}_i}, \ f_{u,12} = f_u - f_c;$$

and the down-type quarks

$$f_{d_i,NS} = f_{d_i} - f_{\bar{d}_i}, \ f_{d,12} = f_d - f_s, \ f_{d,13} = f_d - f_b.$$

Reconstruction:

$$\begin{aligned} f_e &= \frac{f_L + (2N_\ell - 1)f_{e,NS}}{2N_\ell}, \ f_{\bar{e}} = f_\mu = f_{\bar{\mu}} = f_{\bar{\tau}} = f_{\bar{\tau}} = \frac{f_L - f_{e,NS}}{2N_\ell}, \\ f_u &= f_{\bar{u}} = f_c = f_{\bar{c}} = \frac{f_U}{2N_u}, \ f_d = f_{\bar{d}} = f_s = f_{\bar{s}} = f_b = f_{\bar{b}} = \frac{f_D}{2N_d}. \end{aligned}$$

The QED $\otimes QCD$ case

• The singlets and gauge bosons

$$\frac{\mathrm{d}}{\mathrm{d}\log Q^2} \begin{pmatrix} f_L \\ f_U \\ f_D \\ f_\gamma \\ f_g \end{pmatrix} = \begin{pmatrix} P_{\ell\ell} & 0 & 0 & 2N_\ell P_{\ell\gamma} & 0 \\ 0 & P_{uu} & 0 & 2N_u P_{u\gamma} & 2N_u P_{ug} \\ 0 & 0 & P_{dd} & 2N_d P_{d\gamma} & 2N_d P_{dg} \\ P_{\gamma\ell} & P_{\gamma u} & P_{\gamma d} & P_{\gamma\gamma} & 0 \\ 0 & P_{gu} & P_{gd} & 0 & P_{gg} \end{pmatrix} \otimes \begin{pmatrix} f_L \\ f_U \\ f_D \\ f_\gamma \\ f_\gamma \\ f_g \end{pmatrix}$$

The non-singlets

$$\frac{\mathrm{d}}{\mathrm{d}\log Q^2} f_{NS} = P_{ff} \otimes f_{NS}.$$

 \blacksquare The averaged momentum fractions of the PDFs: $f_{\ell_{\rm val}}, f_{\gamma}, f_{\ell_{\rm sea}}, f_q, f_g$

$$\begin{split} \langle x_i \rangle &= \int x f_i(x) \mathrm{d}x, \ \sum_i \langle x_i \rangle = 1 \\ \frac{\langle x_q \rangle}{\langle x_{\ell \mathrm{sea}} \rangle} &\lesssim \frac{N_c \left[\sum_i (e_{u_i}^2 + e_{\tilde{u}_i}^2) + \sum_i (e_{d_i}^2 + e_{\tilde{d}_i}^2) \right]}{e_{\tilde{\ell}_{\mathrm{val}}}^2 + \sum_{i \neq \ell \mathrm{val}} (e_{\ell_i}^2 + e_{\tilde{\ell}_i}^2)} = \frac{22/3}{5} \end{split}$$

The QED $\otimes QCD$ PDFs for lepton colliders

- Electron PDFs:
 - $f_{e_{\rm val}}, f_{\rm Y}, f_{\ell_{\rm sea}}, f_q, f_g$
- \blacksquare Scale uncertainty: 10% for $f_{g/e}$
- The averaged momentum fractions $\langle x_i \rangle = \int x f_i(x) dx$

$Q(e^{\pm})$	e _{val}	γ	ℓ sea	q	g
30 GeV	96.6	3.20	0.069	0.080	0.023
50 GeV	96.5	3.34	0.077	0.087	0.026
M_Z	96.3	3.51	0.085	0.097	0.028

- Muon PDFs: $f_{\mu_{val}}, f_{\gamma}, f_{\ell_{sea}}, f_q, f_g$
- Scale uncertainty: 20% for $f_{g/\mu}$
- The averaged momentum fractions $\langle x_i \rangle = \int x f_i(x) dx$

$Q(\mu^{\pm})$	$\mu_{\rm val}$	γ	ℓsea	q	g
30 GeV	98.2	1.72	0.019	0.024	0.0043
50 GeV	98.0	1.87	0.023	0.029	0.0051
M_Z	97.9	2.06	0.028	0.035	0.0062

The DGLAP for the full SM

The splitting functions can be constructed in terms of Refs.

[Chen et al. 1611.00788, Bauer et al. 1703.08562,1808.08831]

EWPDFs of a lepton

The sea leptonic and quark PDFs

$$\mathbf{v} = \sum_{i} (\mathbf{v}_i + \bar{\mathbf{v}}_i), \ \text{\ellsea} = \bar{\boldsymbol{\mu}} + \sum_{i \neq \mu} (\ell_i + \bar{\ell}_i), \ q = \sum_{i=d}^t (q_i + \bar{q}_i)$$

There is even neutrino due to the EW sector, everything is a parton!

- All SM particles are partons [T. Han, Y. Ma, K.Xie 2007.14300]
- W_L does not evolve: **Bjorken-scaling restoration**.
- The EW correction is not small: $\sim 50\%$ (100%) for $f_{d/e}$ ($f_{d/\mu}$) due to the relatively large SU(2) gauge coupling. [T. Han, Y. Ma, K.Xie 2103.09844]
- Scale uncertainty: $\sim 15\%$ (20%) between Q = 3 TeV and Q = 5 TeV

Parton luminosities at high-energy lepton colliders

Consider a 3 TeV e^+e^- machine and a 10 TeV $\mu^+\mu^-$ machine

Partonic luminosities for

 $\ell^+\ell^-, \gamma\ell, \gamma\gamma, qq, \gamma q, \gamma g, gq, \text{ and } gg$

- The partonic luminosity of $\gamma g + \gamma q$ is $\sim 50\%$ (20%) of the $\gamma\gamma$ one
- The partonic luminosities of qq, gq, and gg are $\sim 2\%~(0.5\%)$ of the $\gamma\gamma$ one
- Given the stronger QCD coupling, sizable QCD cross sections are expected.
- Scale uncertainty is $\sim 20\%$ (50%) for photon (gluon) initiated processes.

Jet production of possible lepton colliders (I)

Large photon induced non-perturbative hadronic production

[Drees and Godbole, PRL 67 1189, hep-ph/9203219]

[Chen, Barklow, and Peskin, hep-ph/9305247; Godbole, Grau, Mohan, Pancheri, SrivastavaNuovo Cim. C 034S1]

- $\sigma_{\gamma\gamma}$ may reach micro-barns level at TeV c.m. energies
- $\sigma_{\ell\ell}$ may reach nano-barns, after folding in the $\gamma\gamma$ luminosity
- The events populate at low p_T regime So we can separate from this non-perturbative range via a p_T cut.

[T. Barklow, D. Dannheim, M. O. Sahin, and D. Schulte, LCD-2011-020]

Jet production at possible lepton colliders (II)

■ High- p_T range $[p_T > (4 + \sqrt{s}/3 \text{ TeV}) \text{ GeV}]$: perturbatively computable $\gamma\gamma \rightarrow q\bar{q}, \ \gamma g \rightarrow q\bar{q}, \ \gamma q \rightarrow gq,$

 $qq \rightarrow qq \ (gg), \ gq \rightarrow gq \ \text{and} \ gg \rightarrow gg \ (q\bar{q}).$

■ Large $\pmb{lpha_s} \lnig(Q^2ig)$ brings a $6\% \sim 15\%$ $ig(30\% \sim 40\%ig)$ enhancement if Q=2Q

- Including the QCD contribution leads to much larger total cross section.
- gg initiated cross sections are large for its large multiplicity;
- $\blacksquare \ gq$ initiated cross sections are large for its large luminosity.
- $\gamma\gamma$ initiated cross sections here are smaller than the EPA results.

Refresh the picture of high-energy lepton colliders

What is the dominant process at a high-energy muon collider?

Quark/gluon initiated jet production dominates Before: After:

18 / 25

Di-jet distributions at a muon collider

Rather a conservative set up: $\theta = 10^{\circ}$

Some physics:

Two different mechanisms: $\mu^+\mu^-$ annihilation VS Fusion processes

- Annihilation is more than 2 orders of magnitude smaller than fusion process.
- Annihilation peaks at $m_{ij} \sim \sqrt{s}$;
- Fusion processes peak near m_{ij} threshold.
- Annihilation is very central, spread out due to ISR;
- Fusion processes spread out, especially for γq and γg initiated ones.

Inclusive jet distributions at a muon collider

- Jet production dominates over WW production until p_T > 60 GeV;
- *WW* production takes over around energy ~ 200 GeV.
- QCD contributions are mostly forward-backward; γγ, γq, and γg initiated processes are more isotropic.

The EW parton luminosities of a 30 TeV muon collider

Production cross sections

$$\sigma(\ell^+\ell^- \to F + X) = \int_{\tau_0}^1 d\tau \sum_{ij} \frac{d\mathscr{L}_{ij}}{d\tau} \,\,\hat{\sigma}(ij \to F), \,\, \tau = \hat{s}/s$$

Partonic luminosities

[T. Han, Y. Ma, K.Xie 2007.14300]

One example: $t\bar{t}$ production at a muon collider

[T. Han, Y. Ma, K.Xie 2007.14300]

Other processes: $W^+W^-, ZH, HH, t\bar{t}H$

The full picture: Semi-inclusive processes

Just like in hadronic collisions:

 $\mu^+\mu^- \rightarrow \text{exclusive particles} + \text{remnants}$

[T. Han, Y. Ma, K.Xie 2007.14300]

Summary and prospects

EWPDF:

- At very high energies, the collinear splittings dominate. All SM particles should be treated as partons that described by proper PDFs.
 - The large collinear logarithm needs to be resummed via solving the DGLAP equations, so the **QCD partons (quarks and gluons) emerge**.
 - When $Q > M_Z$, the EW splittings are activated: the EW partons appear, and the existing QED \otimes QCD PDFs may receive big corrections.

For a high-energy lepton (muon) collider:

- There are many things to work on: SUSY, DM, Higgs, etc.
- The parton fusion processes exceed the $\ell^+\ell^-$ annihilation, where we should employ the EWPDFs [T. Han, Y. Ma, K.Xie 2007.14300]
- The main background of is the jet production:
 - Low p_T range: non-perturbative γγ initiated hadronic production dominates [Chen, Barklow, and Peskin, hep-ph/9305247; Drees and Godbole, PRL 67, 1189,T. Barklow, etal, LCD-2011-020]
 - High p_T range, q and q initiated jet production dominates
 - [T. Han, Y. Ma, K.Xie 2103.09844]
- EWPDF allows to determine the contributions from different partons and their different ploarizations
- One should look at the semi-inclusive processes

The novel features of the EW PDFs

• The EW PDFs must be polarized due to the chiral nature of the EW theory

$$\begin{split} f_{V_+/A_+} &\neq f_{V_-/A_-}, \qquad f_{V_+/A_-} \neq f_{V_-/A_+}, \\ \hat{\sigma}(V_+B_+) &\neq \hat{\sigma}(V_-B_-), \qquad \hat{\sigma}(V_+B_-) \neq \hat{\sigma}(V_-B_+) \end{split}$$

We are not able to factorize the cross sections in an unporlarized form.

$$\boldsymbol{\sigma} \neq f_{V/A} \hat{\boldsymbol{\sigma}}(VB), \ f_{V/A} = \frac{1}{2} \sum_{\lambda, s_1} f_{V_{\lambda}/A_{s_1}}, \ \hat{\boldsymbol{\sigma}}(VB) = \frac{1}{4} \sum_{\lambda, s_2} \hat{\boldsymbol{\sigma}}(V_{\lambda}B_{s_2})$$

The interference gives the mixed PDFs

[Bauer '17, '18, Manohar '18 , TH '16.]

$$f_{\gamma Z} \sim \langle \Omega | A^{\mu \nu} Z_{\mu \nu} | \Omega \rangle + \text{h.c.},$$

similarly for f_{hZ_L} .

Bloch-Nordsieck theorem violation due to the non-cancelled divergence in $f \rightarrow f' V$: cutoff M_V/Q or redefinition

$$f_1 \sim f_e + f_{\rm V}, \ f_3 \sim f_e - f_{\rm V}$$

Return to the begining: $e^-\mu^+ \rightarrow e^-W^+\bar{\nu}_{\mu}$

• EWA: $f_{V_{\lambda}/e_s^{\pm}}(x,Q) = \frac{1}{8\pi^2} g_1 g_2 P_{V_{\lambda}/e_s^{\pm}}(x) \log(Q^2/m_Z^2)$ $g_L = \frac{g_2}{c_W} \left(-\frac{1}{2} + s_W^2\right) < 0, \ g_R = \frac{g_2}{c_W} s_W^2 > 0, \ g_e = -e$

- VI	/ · _		- //		
		e_L^-	e_R^-	e_L^+	e_R^+
	Z_{-}	$g_L^2 \frac{1}{x}$	$g_R^2 \frac{(1-x)^2}{x}$	$g_L^2 \frac{(1-x)^2}{x}$	$g_R^2 \frac{1}{x}$
	Z_+	$g_L^2 \tfrac{(1-x)^2}{x}$	$g_R^2 \frac{1}{x}$	$g_L^2 \frac{1}{x}$	$g_R^2 rac{(1-x)^2}{x}$
	γZ_{-}	$g_e g_L \frac{1}{x}$	$g_e g_R \frac{(1-x)^2}{x}$	$g_e g_L \frac{(1-x)^2}{x}$	$g_e g_R \frac{1}{x}$
	γZ_+	$g_e g_L \frac{(1-x)^2}{x}$	$g_e g_R \frac{1}{x}$	$g_e g_L \frac{1}{x}$	$g_e g_R rac{(1-x)^2}{x}$
		~ · ·			

• The contribution of the mixed PDF $f_{\gamma Z}$ can be either constructive or destructive

$$\boldsymbol{\sigma} = \sum_{\boldsymbol{\lambda}, s_1, s_2} f_{V_{\boldsymbol{\lambda}}/e_{s_1}^-} \hat{\boldsymbol{\sigma}}(V_{\boldsymbol{\lambda}} \boldsymbol{\mu}_{s_2}^+ \to W^+ \bar{\boldsymbol{\nu}}_{\boldsymbol{\mu}})$$

EW physics at high energies

At high energies, every particle become massless

$$\frac{v}{E}: \frac{v}{100 \text{ TeV}} \sim \frac{\Lambda_{\rm QCD}}{100 \text{ GeV}}, \ \frac{v}{E}, \frac{m_t}{E}, \frac{M_W}{E} \to 0!$$

- The splitting phenomena dominate due to large log enhancement
- The EW symmetry is restored: $SU(2)_L \times U(1)_Y$ unbroken
- Goldstone Boson Equivalence:

$$\boldsymbol{\varepsilon}_{L}^{\boldsymbol{\mu}}(k) = rac{E}{M_{W}}(\boldsymbol{\beta}_{W}, \hat{k}) \simeq rac{k^{\boldsymbol{\mu}}}{M_{W}} + \mathscr{O}(rac{M_{W}}{E})$$

The violation terms is power counted as $v/E \to {\rm QCD}$ higher twist effects $\Lambda_{\rm QCD}/Q$ [G. Cuomo, A. Wulzer, arXiv:1703.08562; 1911.12366].

- We mainly focus on the splitting phenomena, which can be factorized and resummed as the EW PDFs in the ISR, and the Fragementaions/Parton Shower in the FRS.
- Other interesting aspects: the polarized EW boson scattering, top-Yukawa coupling effect

Factorization of the EW splittings

$$\begin{split} \mathrm{d}\boldsymbol{\sigma} &\simeq \mathrm{d}\boldsymbol{\sigma}_X \times \mathrm{d}\mathscr{P}_{A \to B+C} \,, \quad E_B \approx z E_A, \quad E_C \approx \bar{z} E_A, \quad k_T \approx z \bar{z} E_A \boldsymbol{\theta}_{BC} \\ \frac{\mathrm{d}\mathscr{P}_{A \to B+C}}{\mathrm{d}z \mathrm{d}k_T^2} &\simeq \frac{1}{16\pi^2} \frac{z \bar{z} |\mathscr{M}^{(\mathrm{split})}|^2}{(k_T^2 + \bar{z} m_B^2 + z m_C^2 - z \bar{z} m_A^2)^2}, \quad \bar{z} = 1 - z \end{split}$$

• The dimensional counting: $|\mathscr{M}^{(\mathrm{split})}|^2 \sim k_T^2$ or m^2

- To validate the fractorization formalism
 - The observable σ should be infra-red safe
 - Leading behavior comes from the collinear splitting

[Ciafaloni et al., hep-ph/0004071; 0007096; C. Bauer, Ferland, B. Webber et al., arXiv:1703.08562;1808.08831]

[A. Manohar et al., 1803.06347; T. Han, J. Chen & B. Tweedie, arXiv:1611.00788]

Splitting functions: EW

Starting from the unbroken phase: all massless

$$\mathscr{L}_{SU(2) \times U(1)} = \mathscr{L}_{gauge} + \mathscr{L}_{\phi} + \mathscr{L}_{f} + \mathscr{L}_{Yukawa}$$

Particle contents:

- Chiral fermions f_{L,R}
 Gauge bosons: B, W^{0,±}
 Higgs H =
 ^(H+)_{H⁰} =
 ^(φ+)_{\sqrt{2}(h-iφ⁰)</sub>
 ^(φ+)_{\sqrt{2}}
 ^(φ+)_{\sqrt}
- Splitting functions [See Ciafaloni et al. hep-ph/0505047, Chen et al. 1611.00788 for complete lists.]

Corrections to the GET in the EWSB

- New fermion splitting: $P \sim \frac{v^2}{k_T^2} \frac{\mathrm{d}k_T^2}{k_T^2}$
- V_L is of IR, h has no IR

The PDFs for W_L/Z_L behaves as constants, which does not run at the leading log: "Bjorken scaling" restoration (higher-twist effects)

$$f_{V_L/f}(x,Q^2) \sim \alpha \frac{1-x}{x}$$

Initial state radiation (ISR), PDFs (DGLAP):

$$f_B(z,\mu^2) = \sum_A \int_z^1 \frac{d\xi}{\xi} f_A(\xi) \int_{m^2}^{\mu^2} d\mathscr{P}_{A \to B+C}(z/\xi,k_T^2)$$
$$\frac{\partial f_B(z,\mu^2)}{\partial \mu^2} = \sum_A \int_z^1 \frac{d\xi}{\xi} \frac{d\mathscr{P}_{A \to B+C}(z/\xi,\mu^2)}{dz dk_T^2} f_A(\xi,\mu^2)$$

• Final state radiation (FSR): Fragmentations (parton showers):

$$\begin{split} \Delta_A(t) &= \exp\left[-\sum_B \int_{t_0}^t \int dz \, \mathscr{P}_{A \to B+C}(z)\right], \\ f_A(x,t) &= \Delta_A(t) f_A(x,t_0) + \int_{t_0}^t \frac{dt'}{t'} \frac{\Delta(t)}{\Delta(t')} \int \frac{dz}{z} \, \mathscr{P}_{A \to B+C}(z) f_A(x/z,t') \end{split}$$

Very important formulation for the LHC physics, and future colliders.