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PINNING DOWN HIGGS 
PROPERTIES

2

Post-discovery, goal of LHC
and future colliders to

measure Higgs properties to 
test EWSB mechanism, mass

generation, and
look for new physics beyond

the Standard Model



HIGGS 
COUPLINGS

MEASUREMENTS
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Fits to
σ x Branching Ratios,
for Higgs couplings

have 10-25% 
errors and currently
agree with SM value

CERN-EP-2019-097

Standard
Model values



HIGGS COUPLINGS IN 
FUTURE

4

CERN-LPCC-2018-04 

Higgs@FutureColliders report (1905.03764) 

Coupling sensitivities playing a role in next collider discussion



TRILINEAR
SEARCH
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CMS-HIG-19-018

Trilinear probed by 
search for Double Higgs 

production

Currently only sensitive to O(10) variations, but
projections estimate trilinear sensitivity 
to ~ [-0.2,3.6] at HL-LHC w/ 3 ab-1 and

20-30% at future colliders



TRIPLE HIGGS PROCESS
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Papaefstathiou and Sakurai
See also Chien et.al.

Sensitivity to Higgs 
quartic is poor even
in optimistic cases

δ3

hh and hhh at one loop
e.g. Bizon et.al.

δ3

δ4
δ4



W/Z AND TOP COUPLINGS 
TO HH
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VVhh measured in
VBF DiHiggs to 4b's

Bishara et.al. (1611.03860)

17

Fig. 12 Posterior probability densities for dc2V at the LHC for L = 300 fb�1 (LHC14) and L = 3 ab�1 (HL-LHC) and for the FCC with L = 10
ab�1. Note the different scales of the axes in the two panels.

68% probability interval on dc2V

1⇥sbkg 3⇥sbkg

LHC14 [�0.37, 0.45] [�0.43, 0.48]

HL-LHC [�0.15, 0.19] [�0.18, 0.20]

FCC100 [0, 0.01] [�0.01, 0.01]

Table 5 Expected precision (at 68% probability level) for the measurement of dc2V at the LHC and the FCC, assuming SM values of the Higgs
couplings. We show results both for the nominal background cross section sbkg, and for the case in which this value is rescaled by a factor 3.

of the coefficients in bin i are given in Appendix D. We denote by p(c2V ) the prior probability distribution of the c2V
coupling.

As justified above, in the evaluation of Eq. (18) we set dB(S) = 0.15 (0.1) and assume that the two nuisance pa-
rameters are normally distributed. We have verified that assuming instead a log normal distribution leads to similar
results. In addition, we take a Poissonian likelihood L(Ni|Ni

obs) in each bin and assume the prior probability p(c2V ) to
be uniform. The resulting posterior probabilities are shown in Fig. 12 for the LHC with L = 300 fb�1 (LHC14) and
L = 3 ab�1 (HL-LHC), and for the FCC with L = 10 ab�1. To produce this figure, as well as to determine the values
reported in Tabs. 5 and 6, we included all bins with at least one event.

From Fig. 12, we can determine the expected precision for a measurement of dc2V at the LHC and the FCC in the
case of SM values of the Higgs couplings. The 68% probability intervals for the determination of c2V at the LHC and
the FCC are listed in Table 5. This is the central result of this work. To assess its robustness with respect to our estimate
of the background cross sections, we also provide the same intervals in the case of an overall rescaling of the total
background by a factor 3. Furthermore, we can also assess the effect of varying cV on the bound on dc2V by treating cV
as a nuisance parameter and marginalizing over it. The leading effect of varying cV comes from the (c2V � c2

V ) term at
the amplitude level – see Eq. 4 – and can be included using the parametrization of Eq. 8. The neglected dependence
is sub-leading and arises from the interference of diagrams proportional to c2

V and cV c3. We take cV to be Gaussian
distributed with a mean equal to 1 (i.e., its SM value) and a width equal to 4.3%, 3.3%, and 2% at the LHC Run II,
HL-LHC, and FCC respectively. In case of the LHC (both Run II and HL), the width of the Gaussian corresponds to
the projected sensitivity from the two parameter fit by ATLAS [111]. The effect of marginalizing over cV is sub-leading
in both LHC scenarios and weakens the bound on dc2V . We find that the results of Table 5 change by 2% for LHC14
and 7% for HL-LHC. The effect at the FCC is much larger causing the bound on dc2V to be O(0.04) rather than 0.01.
This is not surprising and indicates that a joint likelihood would be required at the FCC.

From Table 5, we find that the c2V coupling, for which there are currently no direct experimental constraints, can
already be measured at the LHC with 300fb�1 with a reasonably good accuracy: +45%

�37% with 68% probability. This ac-
curacy is only marginally degraded if the background is increased by a factor 3. A better precision, of the order of +19%

�15%,
is expected at the HL-LHC with 3ab�1. Also, this estimate is robust against an overall rescaling of the background
cross section. Finally, we find a very significant improvement at the FCC with 10ab�1, where a measurement at the
1% level could be achieved providing an unprecedented test for our understanding of the Higgs sector.

Sensitivity to O(.1-1) for
quadratic Higgs couplings

tthh coupling
probed by tthh 

production
Li et.al. (1905.03772)

In Figure 9, we show normalized kinematic distributions of the {y4, y22, c2t , y3, y2ct, yct}
samples at 14 TeV and 100 TeV. Compared to the others, the y22 and c2t samples tend to be

separated more from the y4 one in kinematics. They are away from the y4 sample in opposite

directions w.r.t. mhh and the leading Higgs pT , while in the same direction w.r.t. mtt and

the leading top pT . This can be explained as follows: the two Higgs bosons in the y22 event

are produced via o↵-shell Higgs decay, and hence tend to be soft and central; di↵erently, the

two Higgs bosons in the c2t event are generated more energetically, resulting in a large mhh.

These separations become even wider from 14 TeV to 100 TeV.

A combination of the discussions above justifies that we take a 2D BDT strategy for

the analyses at HL-LHC which are based on the y22 and c2t samples, and meanwhile, raises

the expectation that the y22- and c2t -induced kinematics may further improve the signal

e�ciency and background rejection {✏ij
sig

, ✏i
bg

} at 27 TeV, and even more at 100 TeV.

As for the backgrounds of the tthh analyses, the 4t cross section increases faster as the

beam energy raises (by a factor of ⇠ 8.6 (252) for 27 (100) TeV) than most of the tt+X ones

(by a factor of ⇠ 5.7 (105) for 27 (100) TeV), because of its relatively higher energy threshold

of production. Then, we are able to calculate the projected exclusion limits, assuming that

the signal e�ciency and background rejection {✏ij
sig

, ✏i
bg

} obtained from the 14 TeV simulations

are not changed at 27 TeV and 100 TeV.

¯

hhÆbbgg H27 TeVL
hhÆbbgg H100 TeVL

27 TeV

100 TeV
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Figure 10: Projected exclusion contours in terms of  and ct at 27 TeV (15 ab�1) and

100 TeV (30 ab�1), against the hypothesis of background (including tthh(SM)) + signal

(deviation from {, ct} = {1, 0}). The solid (dashed) contours are based on a tight (softened

tight) b-tagging e�ciency of 60% (70%).

The projected sensitivities are presented in Figure 10. In this Figure, the light blue and

blue belt regions represent the sensitivity reaches of the reference analysis of gg ! hh ! bb��

at 27 TeV and 100 TeV, respectively. We notice the di↵erence of the 27 TeV sensitivity in

literatures (a precision of ⇠ 30% in [11] and ⇠ 80% or worse in [9, 13] in measuring  at 2�

C.L.), and a comparison made between them in [14]. Given that the pileup e↵ect and more

– 17 –

1+δ3

ct2

δhhVV



NEW PHYSICS SCALE BOUND FROM
UNITARITY VIOLATION

8

Any Higgs coupling deviation from SM prediction
leads to unitarity violation at high energies, placing

an upper bound on new physics.  Also, leads to
interesting processes to measure (see Kilian et.al.

1808.05534, Henning et.al. 1812.09299 & Stolarski, Wu 
2006.09374)

What are the new physics
implications of a Higgs

coupling deviation?



CLASSIC EXAMPLE 
SCATTERING ZL ZL ⟺ W+L W-L
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M = c Energy2 + ...

Higgs exchange cancels high energy growth if its couplings
are SM-like, matrix element is unitary if

mH ≲ 1TeV (Lee, Quigg, Thacker), motivating LHC design

M = -c Energy2 + ...

h



GENERAL HIGGS COUPLINGS
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Any nonzero δ or c coupling is a sign of new physics,
which leads to unitarity violation at high energies
(higher dim. operators), placing an upper bound 

on this new physics

tree-level unitarity, just as for the SM without the Higgs. Tree-level unitarity violation is a

sign of strong coupling in the UV, which requires new physics at or below that scale.

As our results will show, upcoming HL-LHC measurements of Higgs couplings probe new

physics at the scale of a few TeV or below. This scale is not su�ciently large that we can

confidently neglect higher-dimension operators in the Standard Model e↵ective field theory

(SMEFT). Therefore, in this paper we adopt a completely model-independent approach to

the interpretation of the measurements of Higgs couplings. We describe these couplings by

the following e↵ective Lagrangian in unitary gauge:

L = L
SM
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(1.1)

Here L
SM

is the SM Lagrangian, h is the real scalar field that parameterizes the physical

Higgs boson (with hhi = 0), Z
µ

, W±
µ

are the SM gauge fields, and t is a Dirac spinor field

parameterizing the top quark. The � parameters parameterize deviations in couplings that

are already present in the SM, while the c parameters denote additional couplings that are

not present in the SM.1 The ellipses denote terms with additional derivatives and/or powers

of the SM fields. The parameters in L
SM

are measured at the percent level or better by

precision measurements of electroweak processes and the mass of the Higgs boson. The

parameters �
V 1

and �
t1

are currently constrained at the 20% level, while �
3

, �
V 2

, and c
t2

are

more weakly constrained. These couplings will be measured with significant improvements

in accuracy at the upcoming HL-LHC run as well as at future colliders, motivating the focus

on these couplings. As already mentioned above, any deviation from the SM predictions in

these measurements is a sign of physics beyond the SM and points to a scale of new physics

that can be explored experimentally. To do this, we assume that there are no additional

particles below some UV scale E
max

, and determine E
max

by requiring that the theory satisfies

tree-level unitarity up to the scale E
max

.

The implications of unitarity for extensions of the SM has been extensively studied, but

there are a number of new features to the present analysis.

• We use a completely model-independent bottom-up approach. In particular, we do not

make any assumption about the infinitely many unconstrained couplings in Eq. (1.1)

1The � parameters in Eq. (1.1) are directly related to the  parameters used in experimental determina-

tions of Higgs boson couplings [14], e.g. Z = 1 + �Z1 and t = 1 + �t1.

2

Higgs Potential Couplings

W/Z Couplings

top Couplings



ASIDE:  TECHNIQUE DETAILS
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OUR GENERAL UNITARITY 
VIOLATION APPROACH
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|P,↵i Define states of total momentum P
w/ other properties α (e.g. # Higgses) 
hP 0,↵0|P,↵i = (2⇡)4�(P � P 0)�↵↵0

Properly
normalized

Leads to unitarity bounds 

hP 0,↵0|T |P,↵i = (2⇡)4�(P � P 0)T↵↵0

|T↵↵0 |  1

Allows us to go beyond 2 to 2 processes and set 
better bounds



EXAMPLE  STATES
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1 Gauge Higgs Coupling Modification Notes

1.1 Notes on Normalized Amplitudes

To consider processes with longitudinal W ’s, it is necessary to modify our states so as to

include charged particles. In the notation of our previous paper, we have

|P, k1, . . . , kri = Ck1···kr

Z
d4x e�iP ·x

rY

i=1

h
�
(�)
i (x)

ik
i

|0i, (1.1)

but now � may not be a real scalar anymore (NOTE: sign di↵erence compared to Markus).

In particular for W ’s, G(�)
� = (G(+)

+ )⇤ creates a longitudinal W+ and G
(�)
+ = (G(+)

� )⇤ creates

a longitudinal W�.

Proper normalization (hP, k|P 0, k0i = (2⇡)4�kk0�4(P � P 0)) again amounts to

1

|Ck1···kr |2
=

1

(k � 1)!(k � 2)!

1

8⇡

 
rY

i=1

ki!

!✓
E

4⇡

◆2k�4

(1.2)

where k = k1 + · · ·+ kr.

Our interactions will preserve charge, so will be of the form

�(@)2dhn
hGn0

0 G
n+
+ G

n+
� (1.3)

with integers d, nh, n+ and where the derivatives will be acting on specific fields. This

interaction allows processes connecting an initial state of kh Higgses, k0 longitudinal Z’s,

k+ longitudinal W+’s, k� longitudinal W�’s to a final state with nh � kh Higgses, n0 � k0
longitudinal Z’s, n+ � k� longitudinal W+’s, n+ � k+ longitudinal W�’s. Notice that there

is a “asymmetric” relationship of the final W± to the initial W± resulting from charge

conservation. The restriction on these integers is 0  kh  nh, 0  k0  n0, 0  k+ 
n+, 0  k�  n+ and that there is at least two particles in the initial and final states since

it is kinematically forbidden for a massless particle to decay.

In our previous paper, an important component of the scattering amplitude calculation

was

h0|
rY

i=1

h
�
(+)
i (x)

ik
i

|P, ki = 1

C⇤
k1···kr

e�iP ·x. (1.4)

To calculate amplitudes for the gauge fields, there are two aspects we need to consider.

The first is the trivial aspect that now G
(+)
+ = (G(�)

� )⇤ annihilates a W+ and the same for

G
(+)
� = (G(�)

+ )⇤ and W�. The second issue is how to calculate matrix elements where the

operators have derivatives on them. A slick way is to rely on Lorentz symmetry to work

these out. For instance, if we have one derivative, acting on a specific field � we have

h0|@µ�(x)(+)
rY

i=1

h
�
(+)
i (x)

ik̄
i

|P, ki = �iPµ
1

C⇤
k1···kr

e�iP ·x (1.5)

1

Only 
Scalars 1
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⇧iki!

8⇡(
P

i ki � 1)!(
P

i ki � 2)!

✓
E

4⇡

◆2
P

i ki�4

Two
Fermions

A.2 States with One Fermion

We consider a state containing a single fermion and k scalars

|P ; k
1

, . . . , k
r

,↵, ai ⌘ C 0
k

Z
d4xe�iP ·x�(�)

1

(x)k1 · · ·�(�)
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) a

R

(q)i, (A.15)

where  
L

is a left-handed Weyl spinor field, ↵ is a spinor index, and a is a gauge index

(e.g. a color index). Note that these states are given by phase space integrals of scattering

states weighted by a spinor wavefunction, so Eq. (A.9) is modified for amplitudes involving

these states. (In the example above, the state created by by the left-handed spinor field is a

right-handed antifermion.) The normalization of these states is given by

hP 0; k, �, b|P ; k,↵, ai = (2⇡)4�4(P 0
� P )k

1

! · · · k
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where we used Eq. (A.13). We choose the states Eq. (A.15) to have normalization

hP 0; k0, �, b|P ; k,↵, ai = (2⇡)4�4(P 0
� P )�

ab

�
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. (A.17)

Note that in the P µ rest frame we have P ·�↵

˙

�/E = �↵
˙

�, so this is the natural generalization

of the normalization condition Eq. (A.3). The normalization constants are therefore given

by

1
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E
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�
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(P ). (A.18)

A.3 States with Two Fermions

We now consider states with two fermions and k scalars of the form
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where  
L

( 
R

) are left-handed (right-handed) Weyl spinors. In the massless limit the states

| . . . Li and | . . . Ri are orthogonal s-wave states, with the L (R) state containing a fermion-

antifermion pair which are both right-handed (left-handed) in helicity. These states are

33

1
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EQUIVALENCE THEOREM
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For general h couplings, restore SU(2)xU(1) invariance, by 
introducing Goldstone bosons to use

equivalence theorem for WL, ZL amplitudes

X ⌘
p
2|H|2 � v =

q
(v + h)2 + ~G2 � v

= h+
1

2v
~G2 � 1

2v2
h~G2 + · · ·

P =
Hp
|H|2

=

✓
0
1

◆
+

✓p
2G+/v
iG0/v

◆
+ · · ·For W/Z and

top interactions

Higgs
self-interactions
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EXAMPLE:  TRILINEAR 
UNITARITY VIOLATION

Modifying trilinear from SM value automatically leads to Unitarity
violation at high energies

Example:  
ZL ZL ZL ⟺ ZL ZL ZL

Cancellation to get
M ~ 1/Energy2

requires SM 
trilinear value!



MODEL DEPENDENCE OF 
INTERACTIONS
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Fig. 3. Representative Feynman diagrams for the Z6

L and Z8

L processes in unitary

gauge, demonstrating the dependence on the trilinear and quartic Higgs interac-

tions.

potential Eq. (2.10) in powers of h and ~G. Powers of X have the structure (see Eq. (2.9))

X3

⇠ h3 + ~G2(h2 + h3 + · · · ) + ~G4(h+ h2 + · · · ) + ~G6(1 + h+ · · · )

+ ~G8(1 + h+ · · · ) + ~G10(1 + h+ · · · ) + · · · , (2.16a)

X4

⇠ h4 + ~G2(h3 + h4 + · · · ) + ~G4(h2 + h3 + · · · ) + ~G6(h+ h2 + · · · )

+ ~G8(1 + h+ · · · ) + ~G10(1 + h+ · · · ) + · · · , (2.16b)

X5

⇠ h5 + ~G2(h4 + h5 + · · · ) + ~G4(h3 + h4 + · · · ) + ~G6(h2 + h+ · · · )

+ ~G8(h+ h2 + · · · ) + ~G10(1 + h+ · · · ) + · · · , (2.16c)

where we set v = 1. From this we see that the potential terms

V �

m2

h

4v2
(1 + 3�

3

) ~G2h2 +
3m2

h

8v3
�
3

~G4h+
m2

h

16v4
�
3

~G6, (2.17)

arise only from the X3 term, and are therefore determined by the deviation of the Higgs

cubic term in the potential independently of the rest of the Higgs potential. (Note that the

interaction ~G2h2 is already present in the SM Higgs potential.)

To robustly determine the scale of tree-level unitarity violation implied by a modification

of the Higgs cubic, we consider tree-level amplitudes of the fields h and ~G that get contri-

butions from the interaction terms Eq. (2.17). We will see below that the strongest bound

comes from 3-to-3 processes such as Z3

L $ Z3

L. We will compute this using the equivalence

theorem below, but we first consider the calculation in unitary gauge. The tree-level ampli-

tude gets contributions from diagrams like the first two diagrams of Fig. 3. The first diagram

represents 45 di↵erent terms obtained by permutations of external legs and vertices, while

the second represents 15. At high energies, there are terms that are independent of E at high

energies, but for the SM value of the Higgs cubic these terms cancel and the amplitude goes

as 1/E2 at high energy, as required by unitarity. By summing all of these together, one could

verify that if the Higgs trilinear interaction is the Standard Model value, the diagrams cancel

to achieve the required energy behavior, 1/E2, for a unitary six point amplitude. However,

if the trilinear is nonstandard, the sum is a constant at high energies that is proportional to

�
3

.

9

(Schematic without coefficients, but we know 
cancellations can occur due to SMEFT description)

Terms circled can only come from trilinear!



BEST CHANNELS FOR HIGGS TRILINEAR

18

(Normalized to largest deviation consistent with ATLAS and CMS 
di-Higgs 95%CL constraints)

Takeaway:  Current constraints still allow low 
unitarity bound w/ nearby new physics, a 

measured coupling deviation from SM places an 
upper bound on new physics

hW+
L

W�
L

! W+
L

W�
L

: E
max

=
9.4 TeV

| �37.5 |

W+
L

W+
L

W�
L

! W+
L

W+
L

W�
L

: E
max

=
5.2 TeVq

| �37.5 |



HIGGS TRILINEAR COUPLING 
DEVIATION
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Estimated 
Theoretical uncertainty of

Unitarity violating scale

Current bound allows new 
physics below ~ 5 TeV

model independent h3

SMEFT dim 6

H
L-
LH
C
co
m
b.

10
0
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V
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0
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M
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Fig. 2. The unitarity bound as a function of the deviation in the h3 coupling.

The optimal bound lies between the model-independent and SMEFT estimates.

The band around the model-independent scale reflects the uncertainty of the

bound from varying the unitarity constraint to 1

2

 |M̂|  2. For comparison,

we show projected 95% C.L. limits on �
3

from a combination at HL-LHC and

a 100 TeV pp collider from [23].

for small values of �
3

, but for larger values the process hh ! hhh dominates and gives

E
max

'

32 TeV

|�
3

|

. (2.12)

The results are plotted in Fig. 2. The scale of tree-level unitarity violation is an estimate for

the scale of strong coupling, and is therefore subject to theoretical uncertainty. As a rough

parameterization of this uncertainty, we vary the constraint from 1

2

< |M| < 2. Within this

range, we see that there is no important di↵erence between the model-independent bound

and the optimal bound.

2.4 SMEFT Predictions from Unitarity

If the scale of new physics is high, we expect that the new physics must be of the decoupling

type. This means that the e↵ects of the new physics at low energies can be captured by

adding to the SM a series of higher-dimension gauge-invariant operators. This is the SMEFT

framework. If experiments reveal a deviation in one or more SM measurements, without any

sign of new physics, it is most natural to interpret the results in terms of SMEFT.

SMEFT is predictive because the same SMEFT operator controls more than one observ-

able. However, these predictions assume that we can neglect higher-dimension terms, and

the size of these corrections is unknown without further theoretical input. We now show

that we can make an interesting quantitative statement about this purely from unitarity

considerations. Specifically, we show that if the scale of new physics is much larger than
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Fig. 3. Unitarity violating scales from processes that depend on �
3

and �
4

as a

function of the fractional deviation ✏
4

from the dimension-6 SMEFT prediction

(see Eqs. (2.14) and (2.15)).

the TeV scale, we can bound the error of the SMEFT prediction, and this error bound gets

better as the scale of new physics gets larger.

To be specific, we assume that �
3

6= 0, and the energy scale of new physics is lower than

some value E
max

. In this case, we expect that the observed deviation in the Higgs cubic

coupling can be explained by the dimension-6 SMEFT operator6

�L
SMEFT

=
1

M2

✓
H†H �

v2

2

◆
3

. (2.13)

This form of the operator keeps the Higgs mass and electroweak VEV at their tree level val-

ues, but modifies the Higgs mass parameter and quartic coupling. If this operator dominates,

it predicts

�
3

=
2v4

M2m2

h

, �
4

= 6�
3

, c
5

= c
6

= 45�
3

. (2.14)

We expect these predictions to become more accurate if the scale of new physics is larger since

these additional couplings themselves generate new unitarity violating amplitudes which

require coupling correlations to be canceled.

To make this quantitative, we simply require that any deviation in the quartic coupling

does not give rise to tree-level unitarity violation below the scale E
max

. This requirement not

6Technically, this operator is a linear combination of dimension 0, 2, 4 and 6 operators, but we will refer

to these linear combinations by their highest dimension.
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The only model-independent couplings arising from �T, �
Z1

and �
W1

are then

�L =
↵�T + �

Z1

v
h@µG0@

µ

G0 +
2�

W1

v
h@µG+@

µ

G� +
↵�T

v
(@

µ

h@µG0)G0

+
i↵�T

v
@
µ

G0(G�@µG+

�G+@µG�) +
↵�T

2v2
(G+@

µ

G�
�G�@

µ

G+)2

+
2↵�T + �

Z1

2v2
( ~G)2@µG0@

µ

G0 +
�
W1

v2
( ~G)2@µG+@

µ

G�

+
i

v2
⇥
(3↵�T � 2�

W1

+ 2�
Z1

)h@µG0 + ↵�T G0@µh
⇤
(G+@

µ

G�
�G�@

µ

G+)

+
i

v3
(2↵�T � �

W1

+ �
Z1

)( ~G)2@µG0(G+@
µ

G�
�G�@

µ

G+).

(3.7)

Interactions involving higher powers of Nambu-Goldstone or Higgs fields can be gen-

erated by next order couplings such as �
Z2

and �
W2

, which are much less constrained ex-

perimentally. Notice that the �T term contributes to these interactions at the same order

as �
Z1

, �
W1

. However, given the stringent experimental constraints on the T parameter,

↵�T . 0.001, these e↵ects are subdominant because we are considering significantly larger

deviations �
Z1

, �
W1

⇠ 0.1, so we will often neglect �T in the following discussion.7

The unitarity constraints on �
Z1

and �
W1

come from the amplitudes V
L

V
L

! V
L

h, V
L

V
L

!

V
L

V
L

, and V
L

V
L

V
L

! V
L

V
L

. These get contributions from a contact term from Eq. (3.7)

while the last two also have a contribution from a Higgs exchange giving the schematic form:

M̂(V
L

V
L

! V
L

h) ⇠ (�
V 1

)
E2

v2
,

M̂(V
L

V
L

! V
L

V
L

) ⇠ (�
V 1

+ �2
V 1

)
E2

v2
,

M̂(V
L

V
L

V
L

! V
L

V
L

) ⇠ (�
V 1

+ �2
V 1

)
E3

v3
.

(3.8)

Because of the experimental constraint |�
V 1

|

<
⇠

0.2, we neglect the quadratic terms. The

processes that give the strongest constraints are:

W+

L

W+

L

! W+

L

W+

L

: E
max

'

1.2 TeV

|�
W1

|

1/2

,

Z
L

Z
L

! W+

L

W�
L

: E
max

'

1.5 TeV

|�
Z1

+ �
W1

|

1/2

,

W+

L

h ! W+

L

Z
L

: E
max

'

1.0 TeV

|�
Z1

� �
W1

|

1/2

,

W+

L

W+

L

W�
L

! W+

L

Z
L

: E
max

'

1.5 TeV

|�
Z1

� �
W1

|

1/3

.

(3.9)

7Ref. [27] recently pointed out that theWLWLZLh amplitude violates unitarity only if custodial symmetry

is broken. This can be verified by the fourth line in Eq. (3.7). From the last line, we see that this also extends

to the ZLW 4
L and Z3

LW
2
L amplitudes.
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Fig. 9. Unitarity violating scales given values of �
t1

and �
V 1

. The solid line

represents the 95% C.L. at the LHC [28] and the dashed line is the HL-LHC

projection for ATLAS [31].

The best bounds on �
t1

from these processes are

t
R

t̄
R

! W+

L

W�
L

: E
max

'

5.1 TeV

|�
t1

+ �
V 1

|

,

t
R

b̄
R

! W+

L

h : E
max

'

3.6 TeV

|�
t1

� �
V 1

|

t
R

b̄
R

! W+

L

W+

L

W�
L

: E
max

'

3.3 TeVq
|�

t1

�

1

3

�
V 1

|

,

(4.6)

where we assume custodial symmetry �
Z1

= �
W1

= �
V 1

. As already mentioned above, these

bounds are numerically stronger than previous bounds [10,12, 13].

Fig. 9 shows the unitarity violating scale from these processes as a function of �
t1

and �
V 1

,

together with projected HL-LHC constraints on these couplings. From this graph, we see

that upcoming measurements of �
V 1

are sensitive to lower scales of new physics. However, if

measurements of hV V agree with the SM, a deviation in the ht̄t coupling at HL-LHC that

is compatible with current constraints can still point to a scale of new physics below 8 TeV.

4.2 Optimal Bound

To further discuss the implications of �
t1

, we consider a scenario where �
t1

is nonzero, but all

the other Higgs couplings are compatible with the SM. To estimate the scale of new physics in

this scenario, it is conservative to assume �
W1

, �
Z1

= 0, since unitarity bounds from Eq. (3.9)
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the dimension-6 SMEFT operator

�L
SMEFT

=
1

M2

✓
H†H �

v2

2

◆
|D

µ

H|

2. (3.10)

This does not contribute to the T parameter, and gives a custodial symmetry preserving

deviation to the hV V couplings. Making a field redefinition to remove the momentum-

dependent terms h@h2 and h2@h2, we find that this operator predicts

�
V 1

=
v2

2M2

, �
V 2

= 4�
V 1

, c
V 3

= 8�
V 1

, c
V 4

= 8�
V 1

, (3.11)

where �
V 2

= �
Z2

= �
W2

, and c
V n

= 0 for n � 5. Using this, we can calculate the additional

amplitudes predicted by Eq. (3.10) that violate unitarity, namely h2Z2

L

and h2W 2

L

and check

whether these give a lower scale of unitarity violation for a given value of �
V 1

. We find that

these new processes give weaker or equivalent bounds to the model-independent bound for

�
Z1

= �
W1

,

E
max

'

1.1 TeV

|�
V 1

|

1/2

, (3.12)

which is therefore also the optimal bound in this case. This is shown in Fig. 5 along with

the constraints from ATLAS and a HL-LHC projection, showing the potential to constrain

new physics below ⇠ 5 TeV.
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Fig. 5. The unitarity bound as a function of the deviation in the hV V coupling.

The optimal bound lies between the model-independent and SMEFT estimate

from the dimension-6 operator Eq. (3.10) and thus they are the same. The band

around the model-independent scale results from varying the unitarity bound

to 1

2

 |M̂|  2. For comparison, we show the 95% C.L. limits on �
V 1

from

ATLAS [28] and a projected HL-LHC combination [23].
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Fig. 10. The unitarity bound on �

t1

assuming �
W1

, �
Z1

= 0. The model-

independent bound is equal to the optimal bound for all values of �
t1

shown.

The band around the model-independent scale results from varying the unitarity

bound to 1

2

 |M̂|  2. For comparison, we show the 95% C.L. limits on the

coupling from ATLAS [28] and a projected HL-LHC combination [23].

are stronger than Eq. (4.1). As in previous sections, we consider the optimal bound obtained

by marginalizing over the infinitely many unmeasured couplings. The optimal bound can be

constrained by considering the SMEFT operator

�L
SMEFT

=
y
t

M2

✓
H†H �

v2

2

◆
(Q̄

L

H̃t
R

+ h.c.), (4.7)

which gives

�
t1

= �

v2

M2

, c
t2

= c
t3

= 3�
t1

, (4.8)

and c
tn

= 0 for n � 4. This imposes additional unitarity bounds. We find that the bounds

for the model-independent processes considered above give the most stringent bound for

small �
t1

, but for larger values of �
t1

the strongest bound comes from t̄
R

t
R

! hh, which gives

E
max

'

2.4 TeV

|�
t1

|

. (4.9)

However, this only dominates over the bounds in Eq. (4.1) for �
t1

>
⇠

0.6, which is larger than

allowed by current constraints. In Fig. 10 we show the unitarity bounds on �
t1

along with the

experimental bounds from ATLAS and the projected sensitivity of a HL-LHC combination.

4.3 SMEFT Predictions from Unitarity

If the scale of new physics is high, we expect that an observed deviation in the Higgs couplings

can be described by the lowest-dimension SMEFT operator. In the case of the t̄th coupling,

21

Existing strong bounds on these couplings still allow
future deviations where new physics has to appear below

~ 3-8 TeV.  In fact, hVV is more powerful than h3!

hVV coupling htt coupling
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Fig. 6. Unitarity violating scales from processes that depend on �
V 1

and �
V 2

as a function of the fractional deviation of �
V 2

from its SMEFT prediction,

�
V 2

= 4�
V 1

(1 + ✏
V 2

).

3.3 SMEFT Predictions from Unitarity with Custodial Symmetry

If the scale of new physics is high, we expect that an observed deviation in the Higgs couplings

can be described by the lowest-dimension SMEFT operator. In this section we assume that

the new physics preserves custodial symmetry, and consider the question of the accuracy

of the SMEFT prediction, following the logic explained in §2.4. The dimension-6 SMEFT

operator Eq. (3.10) predicts �
V 2

= 4�
V 1

, and we define

✏
V 2

⌘

�
V 2

� �dim 6

V 2

�dim 6

V 2

. (3.13)

When we include both �
V 1

and �
V 2

, we have the additional model-independent processes

hh ! V
L

V
L

, hV
L

V
L

! V
L

V
L

and V
L

V
L

V
L

! V
L

V
L

V
L

. Requiring that these do not violate

unitarity constrains E
max

for a given value of ✏
V 2

. The results are shown in Fig. 6. The

results are qualitatively similar to the case of the Higgs self-interaction. The predictions of

SMEFT become accurate for E
max

>
⇠

10 TeV, corresponding to values of �
V 1

much smaller

than what will be probed in upcoming experiments, and since the unitarity-violating scale

is low even for �
V 1

of O(1%), in this case a general value of �
V 2

does not change the bound

much.
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Fig. 11. The unitarity bound from processes that depend on �

t1

, c
t2

= 3�
t1

(1+

✏
t2

) where ✏
t2

= 0 is the prediction of the dimension-6 SMEFT operator. Due

to these amplitudes depending on coupling �
V 1

, it has been set to zero in this

plot.

this is the operator given in Eq. (4.7), which makes the predictions Eq. (4.8) for the higher-

order deviations. We can constrain the accuracy of these predictions from unitarity, as

outlined in previous sections. The results are shown in Fig. 11. As expected, the SMEFT

predictions are accurate only if the scale of new physics is >
⇠

10 TeV.

5 New Physics from hhV V and hht̄t Couplings

In this section we discuss the implications of a deviation in the hhV V or hht̄t coupling,

parameterized respectively by �
V 2

and c
t2

in Eq. (1.1). Since there are no symmetries to

prevent this, any new physics that contributes to these couplings should also contribute to

a comparable deviation in �
V 1

and �
t1

, which will be measured to greater precision. On the

other hand, it is possible that �
V 1

and �
t1

are suppressed by an accidental cancellation. In

any case, experimental constraints on �
V 2

and c
t2

will improve dramatically at the HL-LHC,

and will give us additional information about possible new physics. Another motivation for

studying these couplings is that they directly contribute to di-Higgs production. Therefore,

an anomalous rate for di-Higgs production may be due to �
V 2

(in vector boson fusion) or �
t2

(from gluon fusion). Therefore we should consider these couplings in order to determine the

unitarity bounds from any future di-Higgs anomalies.
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Fig. 9. Unitarity violating scales given values of �
t1

and �
V 1

. The solid line

represents the 95% C.L. at the LHC [28] and the dashed line is the HL-LHC

projection for ATLAS [31].

The best bounds on �
t1

from these processes are
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�
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(4.6)

where we assume custodial symmetry �
Z1

= �
W1

= �
V 1

. As already mentioned above, these

bounds are numerically stronger than previous bounds [10,12, 13].

Fig. 9 shows the unitarity violating scale from these processes as a function of �
t1

and �
V 1

,

together with projected HL-LHC constraints on these couplings. From this graph, we see

that upcoming measurements of �
V 1

are sensitive to lower scales of new physics. However, if

measurements of hV V agree with the SM, a deviation in the ht̄t coupling at HL-LHC that

is compatible with current constraints can still point to a scale of new physics below 8 TeV.

4.2 Optimal Bound

To further discuss the implications of �
t1

, we consider a scenario where �
t1

is nonzero, but all

the other Higgs couplings are compatible with the SM. To estimate the scale of new physics in

this scenario, it is conservative to assume �
W1

, �
Z1

= 0, since unitarity bounds from Eq. (3.9)
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Fig. 15. Unitarity violating contours from �
3

and c
t2

. The 95% C.L. pro-

jections from gluon fusion di-Higgs searches are shown for the LHC (solid) and

for the HL-LHC (dashed), which were obtained by expanding the 1� contours

of [34] by 1.6 to estimate the 95% C.L. sensitivity.

linear contributions are:
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(5.7)

In Fig. 15, we plot the unitarity violating scale as a function of c
t2

and �
3

. Superimposed

on the plot are estimates of the current bounds and sensitivity to these parameters from

gluon fusion di-Higgs production [34]. We see that it is plausible that the HL-LHC could

find deviations that point to a scale of new physics below 3 TeV, even allowing for the

experimental degeneracy between c
t2

and �
3

.
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Fig. 12. Unitarity violating contours from �
V 1

and �
V 2

. The solid lines

represent the ATLAS bound on �
V 1

[28] while the �
V 2

bound [33] is outside of

the plot range. The dashed lines show the projected bounds for �
V 1

[23] and

�
V 2

at HL-LHC, where the �
V 2

bounds are the 95% C.L. bounds from doubling

the 68% bounds from a projected vector boson fusion di-Higgs search [32].

Fig. 13. The unitarity bound from as a function of �
V 2

neglecting small terms

proportional to �
V 1

. The optimal bound lies between the model-independent

and SMEFT estimates. The band around the model-independent bound results

from varying the unitarity bound to 1

2

 |M̂|  2. For comparison, we show

95% C.L. limits on the coupling from the vector boson fusion di-Higgs analysis

projected for the HL-LHC and a 100 TeV pp collider [32].

these couplings are given by a single SMEFT operator. In the present case, we use the
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Extension to tthh and VVhh?

Higgs Couplings without the Higgs

Brian Henning, Davide Lombardo, Marc Riembau, and Francesco Riva
Départment de Physique Théorique, Université de Genève,

24 quai Ernest-Ansermet, 1211 Genève 4, Switzerland

The measurement of Higgs couplings constitute an important part of present Standard Model
precision tests at colliders. In this article, we show that modifications of Higgs couplings induce
energy-growing e↵ects in specific amplitudes involving longitudinally polarized vector bosons, and
we initiate a novel program to study these very modifications of Higgs couplings o↵-shell and at
high-energy, rather than on the Higgs resonance. Our analysis suggests that these channels are
complementary and, at times, competitive with familiar on-shell measurements; moreover these
high-energy probes o↵er endless opportunities for refinements and improvements.

I. INTRODUCTION

The precise measurement of the Higgs boson cou-
plings to other Standard Model (SM) particles is
an unquestionable priority in the future of particle
physics. These measurements are important probes
for our understanding of a relatively poorly mea-
sured sector of the SM; at the same time they o↵er
a window into heavy dynamics Beyond the Standard
Model (BSM). Indeed, it is well-known that the ex-
change of heavy states (with masses beyond the di-
rect collider reach) leaves imprints in low-energy ex-
periments, in a way that is systematically captured
by an E↵ective Field Theory (EFT).

There are a number of similar ways in which
one can parametrize modifications of Higgs cou-
plings (HC): via partial widths 2i = �h!ii/�SM

h!ii [1],
via Lagrangian couplings in the unitary gauge ghii [2,
3], via pseudo observables [4], or via the e↵ective field
theory L =

P
i ci Oi/⇤2, consisting of dimension-6

operators [3, 5]. In particular, the operators

Or = |H|2@µH†@µH Oy = Y |H|2 LH R

OBB = g0 2|H|2Bµ⌫B
µ⌫ OWW = g2|H|2W a

µ⌫W
aµ⌫

OGG = g2s |H|2Ga
µ⌫G

aµ⌫ O6 = |H|6 (1)

with Y the Yukawa for fermion  , can be put in
simple correspondence with the s, as they modify
single-Higgs processes without inducing other elec-
troweak symmetry breaking e↵ects.

The well-established method for testing HC is, of
course, to measure processes in which a Higgs boson
is produced on-shell.

In this article we initiate a novel program to test
the very same Higgs couplings, o↵-shell and at high-
energy, via their contributions to the physics of longi-
tudinally polarized gauge bosons. We will show that
this program is potentially competitive with on-shell

HC HwH Growth

t Oyt ⇠ E2

⇤2

� O6 ⇠ vE
⇤2

Z�

��

V

OWW

OBB

Or

⇠ E2

⇤2

g Ogg ⇠ E2

⇤2

TABLE I. Each e↵ect (left column) can be measured as an

on-shell Higgs Coupling (diagram in the HC column) or in a

high-energy process (diagram in the HwH column), where it

grows with energy as indicated in the last column.

measurements, but it also o↵ers endless opportunities
of refinements and improvements. Indeed, the high-
energy program can benefit maximally from accu-
mulated statistics, from improved SM computations,
from phenomenological analyses aimed at enhancing
the signal-over-background (see, for instance, [6–11]),
and from dedicated experimental analyses aimed at
reducing the di↵erent backgrounds. Furthermore,
given the complexity of the final states, advanced
machine learning techniques [12–14] are expected to
have a crucial role in improving on our simple cut
and count analysis. In the context of a global pre-
cision program, the high-energy aspects that we dis-
cuss here will be the ones that benefit the most, not
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FIG. 3. LEFT: HL-LHC (3000 fb�1) sensitivity on modifications of the top quark Yukawa �yt from the process in Fig. 2

(shaded bands), and from measurements of Higgs couplings (95%C.L., dashed grey lines); B controls additional backgrounds

(for B = 1 the analysis includes a number of background events equal to the SM signal); 1� results without the 0` and 1`
categories correspond to the dashed purple line. CENTER: same but for modifications of the Higgs trilinear ��. RIGHT:

1� reach for modification of the Higgs-�� and Z� rates, using high-E measurements (green,pink,brown bands correspond to

leptonic,semileptonic, and also hadronic final states) or Higgs couplings (black error bars).

large number of events left in the zero and one lepton
categories makes it possible to extend the analysis
to higher energies, where not only the e↵ects of the
energy growth will be enhanced, but also the back-
ground reduced.

This mode of exploration also appears well-suited
for high-energy lepton colliders like CLIC. Indeed,
the processes in the second line of Eq. (4) have a
lower threshold for production than the t̄th final state
that is usually considered to measure the top quark
Yukawa. Moreover, the final state in Eq. (4) is pro-
duced in vector boson fusion, whose crossection in-
creases with energy, while t̄th is produced in Drell-
Yan, decreases with energy. We plan to study this in
detail in the future.

The Higgs self coupling. Measurements of the
Higgs self-coupling have received enormous atten-
tion in collider studies. In the di-Higgs channel at
HL-LHC precision can reach �� 2 [�1.8, 6.7] at
95%C.L. [28] using the bb̄�� final state. Here we pro-
pose the processes of Eqs. (5,6) with VBS scattering
topology and a multitude of longitudinally polarized
vector bosons, see second row of Tab. I and Fig. 1
where a unitary-gauge diagram is shown. The modi-
fied coupling ��, or the operator O6, induces a lin-
ear growth with energy w.r.t. the SM in processes
with jjhVLVL final state (Tab. I), and a quadratic
growth in processes with jjVLVLVLVL. For the for-
mer, the same-sign W±W±hjj with leptonic (e, µ)
decays is particularly favourable for its low back-

ground: two same-sign leptons (2ssl) and VBS topol-
ogy o↵ers a good discriminator against background,
allowing for h ! b̄b decays. For illustration we focus
on this channel in which the SM gives NSM ' 50
events. Backgrounds from tt̄jj enter with a mis-
identified lepton, but it can be shown that they can
be kept under control with the e�ciencies reported
in [29] and with VBS cuts on the forward jets. A po-
tentially larger background is expected to come from
fake leptons, but the precise estimation of it is left
for future work.

The results—shown in the center panel of Fig. 3—
are very encouraging: this simple analysis can match
the precision of the by-now very elaborate di-Higgs
studies. There are many directions in which this ap-
proach can be further refined: i) including the many
other final states in Eq. (5), both for the vector de-
cays and for the Higgs decay ii) including the E2-
growing jjVLVLVLVL topologies of Eq. (6), iii) tak-
ing into account di↵erential information. Moreover,
the process of Tab. I grows only linearly with energy
w.r.t. the SM amplitude with transverse vectors in
the final state, but it grows quadratically w.r.t. the
SM final states; iv) measurements of the polarization
fraction can improve this measurement. We leave all
this for a future detailed study.

Higgs to ��, Z�. These decay rates are loop-level
and small in the SM: their measurement implies
therefore tight constraints on possible large (tree-
level) BSM e↵ects, which in the EFT language are



CONCLUSIONS
• Precision Higgs couplings can discover a SM deviation; unitarity 

violation gives quantitative connection btw coupling deviations 
and bound on new physics

• Higgs self-couplings, hVV, htt current bounds allow new physics at 
LHC energies and future sensitivities can still place bounds below 
10 TeV (with different sensitivities)

• Higher order couplings (e.g. hhhh, hhVV, hhtt) are SMEFT-like if 
new physics scale is well above TeV scale.  If no new physics 
accompanies coupling deviation, evidence for SMEFT-like 
structure
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CONCLUSIONS (CONT.)
• Di-Higgs searches test hhh, hhVV, hhtt couplings, with 

interesting interplay for new physics bounds  

• Future direction 1:  Can we develop no lose 
theorems for the new physics accompanying a 
coupling deviations?

• Future direction 2:  Are these amplitudes useful 
beyond unitarity violation?  Are there better/stronger 
unitarity amplitudes? 
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V AND TOP COUPLINGS
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