Electroweak Restoration at the LHC and Beyond: The V h Channel

Li Huang, <u>Samuel D. Lane</u>, Ian M. Lewis, Zhen Liu

arXiv: 2012.00774

Outline

- Introduction
- EW Symmetry/Theory
- Parton Level
- Experimental Challenges
- Detector Level Results
 - Channels and Backgrounds
 - Simulation, cuts, and statistics

Introduction

- The Standard Model (SM) is already widely successful
- One major component of the SM is electroweak (EW) symmetry breaking
- Future colliders probe higher energies above this EW scale where some interesting SM physics occurs
- Above this scale EW particles become massless. Must treat things as partons

Our Goal

- We want to study the nature of this EW symmetry breaking
- The key to studying this is the Goldstone boson equivalence theorem (GBET)
 - At high energies the EW gauge bosons become massless and their longitudinal modes can be replaced by goldstones
- Want to create an analysis to test GBET and thus EW symmetry

Outline

- Introduction
- EW Symmetry/Theory
- Parton Level
- Experimental Challenges
- Detector Level Results
 - Channels and Backgrounds
 - Simulation, cuts, and statistics

Electroweak (EW) Symmetry

Broken Phase

- U(1)_{EM}
- Massive VBs:
 - Z, W[±]
- Massless Photon: A
- Massive Fermions
- Higgs scalar h

Unbroken Phase

- SU(2)_LxU(1)_y
- Massless VBs
 - Wⁱ, B
- Massless Goldstone
- Massless Fermions
- Higgs doublet Φ

Theory

- The EW SM only has 3 free parameters.
- Take your favorite set of parameters $~~(i.e.~M_Z,~\alpha_{EW},~G_F)$
- Calculate and fix couplings (g and g')
- Now take the limit as vev \rightarrow 0 (M_W \rightarrow 0)

$$H = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}} \left(v + h + i \, G^0 \right) \end{pmatrix}$$

 $\mathcal{L}_{\rm kin} = |D_{\mu}H|^2 \qquad V(H) = -\mu^2 H^{\dagger}H + \lambda \left(H^{\dagger}H\right)^2$

EW Restoration

Broken Phase

Unbroken Phase

Longitudinal

In the limit s $\rightarrow \infty$

EW Restoration

Broken Phase

Unbroken Phase

Longitudinal

We want to measure this convergence

Outline

- Introduction
- EW Symmetry/Theory
- Parton Level
- Experimental Challenges
- Detector Level Results
 - Channels and Backgrounds
 - Simulation, cuts, and statistics

Parton Level Vh Signal Strength

- Want to calculate a signal strength at parton level between Vh and Gh
- Calculate some helicity amplitudes, integrate over parton distribution functions (pdfs), take ratio of Pt distrubtions

$$\mu_{Wh} = \frac{d\sigma(pp \to W^{\pm}h)/dp_T^h}{d\sigma(pp \to G^{\pm}h)/dp_T^h},$$
$$\mu_{Zh} = \frac{d\sigma(pp \to Zh)/dp_T^h}{d\sigma(pp \to G^0h)/dp_T^h}.$$

Why don't we look at WW or WZ?

- The GBET still applies
- Comes down to cross sections polarization
- For Vh production the cross sections are longitudinally dominated at high energy
- While WV is transverse dominated
- This means need to disentangle polarizations for WV. Which is somewhat tricky to do

Wh Parton Helicity Dependence

Zh Parton Helicity Dependence

WZ Parton Helicity Dependence

WW Parton Helicity Dependence

Parton Level Signal Strength

Outline

- Introduction
- EW Symmetry/Theory
- Parton Level
- Experimental Challenges
- Detector Level Results
 - Channels and Backgrounds
 - Simulation, cuts, and statistics

Experimental Challenges

- In a collider experiment we know the Higgs and Z both decay
- In the unbroken phase the massless Goldstones do not decay
- How do we compare this 2→2 process with a 2→4 process?
- We will do MC simulation so how do we precisely determine the uncertainties

Experimental Challenges

- Get the hV cross section by using likelihood
- We have to worry about pdfs, showering, hadronization and detector effects.
- We sweep all of that into an efficiency matrix
- We don't actually measure s of the system
- Need to find a good placeholder.
- P_{Th} and M_{Vh} seem like good candidates. They should measure the energy going through the hVV/hVG vertex

Outline

Introduction

- Broken vs Unbroken Phase
- Challenges and Technicalities
- Amplitudes/Parton Level
- Detector Level Results
 - Channels and Backgrounds
 - Simulation, cuts, and statistics

Channel Breakdown

• The analysis considers three decay channels

•
$$Zh \to \ell^+ \ell^- b\bar{b}$$

•
$$Wh \to \ell \nu b \overline{b}$$

$$. Zh \rightarrow \nu\nu b\overline{b}$$

 In each of these decay channels we consider 2 jet and 3 jet final states giving a total of 6 categories

Backgrounds for $Zh \rightarrow \ell^+ \ell^- b\overline{b}$

- Z+jet and W+jet
 - Heavy flavor (HF) At least one b jet
 - Charm (cj) at least one c jet (but no b jets)
 - Light (lj) anything else
- Single top production
- Top pair production
- Diboson pair production

Backgrounds for $Zh \rightarrow \ell^+ \ell^- b\overline{b}$

		14 [ГeV	$27 { m TeV}$				
	$n_j = 2$		$n_j = 3$		$n_j = 2$		$n_j = 3$	
	Pre-Cut	DNN	Pre-Cut	DNN	Pre-Cut	DNN	Pre-Cut	DNN
$h_{bb}Z_{\ell\ell}$	1.1 fb	0.22 fb	1.1 fb	0.23 fb	2.0 fb	0.87 fb	1.6 fb	1.2 fb
Z+HF	300 fb	1.4 fb	530 fb	3.3 fb	580 fb	16 fb	780 fb	120 fb
tt	27 fb	0.14	69 fb	$0.095~{\rm fb}$	92 fb	$1.6~{\rm fb}$	180 fb	19 fb
single top	$0.85~{\rm fb}$	0.0036 fb	3.5 fb	$0.0041 { m ~fb}$	2.9 fb	$0.047~{\rm fb}$	11 fb	1.0 fb
Zcl	0.18	$0.0036~{\rm fb}$	2.1 fb	$0.025~{\rm fb}$	0.75 fb	0.034 fb	6.4 fb	$0.94 {\rm ~fb}$
Zll	0.68	$0.019~{\rm fb}$	13 fb	$0.20~{\rm fb}$	2.0 fb	$0.096~{\rm fb}$	27 fb	4.1 fb
VV'	4.8 fb	0.026 fb	5.4 fb	0.051 fb	6.5 fb	0.22 fb	7.8 fb	$1.5 { m ~fb}$
Signal Significance		9.4		6.5		25		13

Simulation Details

- There are lots of backgrounds to consider for each channel
- Use MG5/Pythia/Delphes Chain
- We consider one additional jet matching
- Use DNN to separate signal and background

 $L = -y_s \log p - (1 - y_s) \log(1 - p) + \lambda \parallel W \parallel^2,$

- Cheat and keep track of parton level information to get efficiency matrix
 - Simply maps bins at detector level to bins at parton level. Includes all detector/parton effects

Event Numbers after DNN: 2 lepton

Event Numbers after DNN: 1 lepton

Event Numbers after DNN: 0 lepton

Signal Strength: 2 Lepton

Signal Strength: 1 Lepton

Signal Strength: 0 Lepton

Signal Strength: Combined

Delta Chi Square

Chi Square

- Chi square per degree of freedom is a standard and simple test
- Use standard Poisson statistics to calculate

$$\Delta \chi_m^2 = \frac{1}{m} \sum_{l=1}^m \log \left(\frac{\operatorname{Pois}(n_{obs,l} | \sum_j \Delta \sigma_j^{Gh} \epsilon_{lj} L + B_l)}{\operatorname{Pois}(n_{obs,l} | S_l + B_l)} \right)$$

 Lets look at the results but keep in mind we need a slightly better statistical test.

Chi Square

Kullback-Leibler (KL) Divergence

KL Divergence

- Small KL implies agreement with hypothesis
- Expect KL to decrease as we include more P_{T} bins

KL Diveregence

Conclusions

- We have shown the capabilities of HL-LHC and HE-LHC in observing the GBET and Electroweak restoration.
- We find for $p_t^h > 400 \text{ GeV}$ the G h and the V h distributions agree at about 80%.
- The KL divergence shows that the two hypotheses agree at high energy.
- HL can confirm electroweak restoration to 40%.
- HE can confirm it to 6%.

Thank You! Any Questions?

Z h and W h Amplitudes

$$\begin{aligned} \mathcal{A}(q_{+}\bar{q}_{-} \to Z_{L}h) &= \pm i \frac{e^{2} g_{R}^{qZ}}{2 c_{W}^{2} s_{W}^{2}} \sin \theta + \mathcal{O}(\hat{s}^{-1}), \\ \mathcal{A}(q_{-}\bar{q}_{+} \to Z_{L}h) &= \pm i \frac{e^{2} g_{L}^{qZ}}{2 c_{W}^{2} s_{W}^{2}} \sin \theta + \mathcal{O}(\hat{s}^{-1}), \\ \mathcal{A}(q_{-}\bar{q}_{+}' \to W_{L}^{\pm}h) &= -i \frac{e^{2}}{2 \sqrt{2} s_{W}^{2}} \sin \theta + \mathcal{O}(\hat{s}^{-1}), \\ \mathcal{A}(q_{\pm}\bar{q}_{\mp} \to Z_{\pm}h) \sim \mathcal{A}(q_{-}\bar{q}_{+}' \to W_{L}^{\pm}h) \sim \mathcal{O}(\hat{s}^{-1/2}), \\ \mathcal{A}(q_{+}\bar{q}_{-}' \to W_{\pm}^{\pm}h) &= \mathcal{A}(q_{+}\bar{q}_{-}' \to W_{\mp}^{\pm}h) = 0. \end{aligned}$$

WZ, WW, and ZZ Amplitudes

$$\begin{aligned} \mathcal{A}(q_{-}\bar{q}_{+} \to W_{\pm}^{+}W_{\mp}^{-}) &= \mp i \frac{e^{2}}{2 s_{W}^{2}} \frac{1 + 2 T_{3}^{q} \cos \theta}{1 \pm \cos \theta} \sin \theta + \mathcal{O}(\hat{s}^{-1}) \,, \\ \mathcal{A}(q_{-}\bar{q}_{+}^{\prime} \to W_{\pm}^{\pm}Z_{\mp}) &= \mp i \frac{e^{2}}{\sqrt{2} s_{W}^{2} c_{W}} \left(g_{L}^{q'Z}(1 + \cos \theta) + g_{L}^{qZ}(1 - \cos \theta) \right) \frac{\sin \theta}{1 \pm \cos \theta} + \mathcal{O}(\hat{s}^{-1}) \\ \mathcal{A}(q_{-}\bar{q}_{+} \to Z_{+}Z_{-}) &= 2 i \frac{e^{2}}{s_{W}^{2} c_{W}^{2}} g_{L}^{qZ^{2}} \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} + \mathcal{O}(\hat{s}^{-1}) \,, \\ \mathcal{A}(q_{+}\bar{q}_{-} \to Z_{+}Z_{-}) &= -2 i \frac{e^{2}}{s_{W}^{2} c_{W}^{2}} g_{R}^{qZ^{2}} \sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}} + \mathcal{O}(\hat{s}^{-1}) \,, \end{aligned}$$

 $\mathcal{A}(q_{\pm}\bar{q}_{\mp} \to W_{\pm}^{\pm}W_{L}^{\mp}) \sim \mathcal{A}(q_{-}\bar{q}_{+}' \to W_{\pm}^{\pm}Z_{L}) \sim \mathcal{A}(q_{-}\bar{q}_{+}' \to Z_{\pm}W_{L}^{\pm} \sim \mathcal{A}(q_{\pm}\bar{q}_{\mp} \to Z_{\pm}Z_{L}) \sim \mathcal{O}(\hat{s}^{-1/2})$ $\mathcal{A}(q_{\pm}\bar{q}_{\mp} \to W_{\pm}^{+}W_{\pm}^{-}) \sim \mathcal{A}(q_{-}\bar{q}_{+}' \to W_{\pm}^{\pm}Z_{\pm}) \sim \mathcal{A}(q_{\pm}\bar{q}_{\mp} \to Z_{\pm}Z_{\pm}) \sim \mathcal{O}(\hat{s}^{-1}),$ $\mathcal{A}(q_{+}\bar{q}_{-} \to W_{\pm}^{+}W_{\mp}^{-}) = \mathcal{A}(q_{+}\bar{q}_{-}' \to W_{\lambda}^{\pm}Z_{\lambda'}) = 0.$

Relevant Goldstone Amplitudes

$$\begin{aligned} \mathcal{A}(q_{+}\bar{q}_{-} \to G^{0}h) &= -\frac{e^{2} g_{R}^{qZ}}{2 c_{W}^{2} s_{W}^{2}} \sin \theta, \\ \mathcal{A}(q_{-}\bar{q}_{+} \to G^{0}h) &= \frac{e^{2} g_{L}^{qZ}}{2 c_{W}^{2} s_{W}^{2}} \sin \theta, \\ \mathcal{A}(q_{-}\bar{q}_{+} \to G^{\pm}h) &= \mp i \frac{e^{2}}{2 \sqrt{2} s_{W}^{2}} \sin \theta, \\ \mathcal{A}(q_{-}\bar{q}_{+} \to G^{\pm}G^{0}) &= \frac{e^{2}}{2 \sqrt{2} s_{W}^{2}} \sin \theta, \\ \mathcal{A}(q_{+}\bar{q}_{-} \to G^{+}G^{-}) &= -i \frac{e^{2} Q_{q}}{2 c_{W}^{2}} \sin \theta, \\ \mathcal{A}(q_{-}\bar{q}_{+} \to G^{+}G^{-}) &= -i \frac{e^{2} T_{3}^{q}}{6 c_{W}^{2} s_{W}^{2}} \left(3 c_{W}^{2} + 2 T_{3}^{q} s_{W}^{2}\right) \sin \theta. \end{aligned}$$

		14 1	ГeV	27 TeV				
	$n_j = 2$		$n_j = 3$		$n_j = 2$		$n_j = 3$	
	Pre-Cut	DNN	Pre-Cut	DNN	Pre-Cut	DNN	Pre-Cut	DNN
$h_{bb}Z_{\ell\ell}$	1.1 fb	0.22 fb	1.1 fb	0.23 fb	2.0 fb	0.87 fb	1.6 fb	1.2 fb
Z+HF	300 fb	1.4 fb	530 fb	3.3 fb	580 fb	16 fb	780 fb	120 fb
tt	27 fb	0.14	69 fb	$0.095~{\rm fb}$	92 fb	$1.6 {\rm ~fb}$	180 fb	19 fb
single top	0.85 fb	0.0036 fb	3.5 fb	$0.0041~{\rm fb}$	2.9 fb	$0.047 \ \mathrm{fb}$	11 fb	1.0 fb
Zcl	0.18	0.0036 fb	2.1 fb	0.025 fb	0.75 fb	0.034 fb	6.4 fb	$0.94~{\rm fb}$
Zll	0.68	0.019 fb	13 fb	0.20 fb	2.0 fb	$0.096 \ \mathrm{fb}$	27 fb	4.1 fb
VV'	4.8 fb	0.026 fb	5.4 fb	0.051 fb	6.5 fb	0.22 fb	7.8 fb	$1.5 \mathrm{~fb}$
Signal Significance		9.4		6.5		25		13

		14 7		27 TeV				
	$n_j = 2$		$n_j = 3$		$n_j = 2$		$n_j = 3$	
	Pre-Cut	DNN	Pre-Cut	DNN	Pre-Cut	DNN	Pre-Cut	DNN
$h_{bb}W_{\ell u}$	12 fb	6.1 fb	7.3 fb	0.38 fb	19 fb	9.6 fb	9.8 fb	1.2 fb
W+HF	580 fb	38 fb	640 fb	$0.035~{\rm fb}$	790 fb	43 fb	940 fb	0.33 fb
Z+HF	310 fb	$8.5~{\rm fb}$	380 fb	$9.7 \times 10^{-5} {\rm ~fb}$	640 fb	21 fb	670 fb	0.048 fb
tt	$150 \mathrm{~fb}$	15 fb	$560~{\rm fb}$	$0.30~{\rm fb}$	580 fb	28 fb	1500 fb	$0.93~{\rm fb}$
single top	11 fb	1.1 fb	$68 { m ~fb}$	$0.053~{\rm fb}$	36 fb	$1.7 { m ~fb}$	100 fb	$0.12 { m ~fb}$
Wcl	4.9 fb	$0.46~{\rm fb}$	12 fb	$2.5 \times 10^{-3} \text{ fb}$	8.0 fb	$0.56~{\rm fb}$	19 fb	$0.027~{ m fb}$
Wll	10 fb	1.2 fb	$36~{\rm fb}$	$0.021 \ {\rm fb}$	28 fb	$2.7~{\rm fb}$	92 fb	$0.34 {\rm ~fb}$
Zcl	0.15 fb	$4.2 \times 10^{-3} \text{ fb}$	0.51 fb	$0 {\rm ~fb}$	0.62 fb	$0.012 \ \mathrm{fb}$	1.8 fb	$7.2 \times 10^{-5} \text{ fb}$
Zll	0.49 fb	0.014 fb	2.0 fb	$4.7 \times 10^{-5} \text{ fb}$	1.5 fb	0.032 fb	5.2 fb	$6.0 \times 10^{-4} \text{ fb}$
VV'	34 fb	2.0 fb	28 fb	0.015 fb	41 fb	1.9 fb	33 fb	0.11 fb
Signal Significance		40		28		120		98

		1	4 TeV		27 TeV				
	$n_j = 2$		$n_j = 3$		$n_j = 2$		$n_j = 3$		
	Pre-Cut	DNN	Pre-Cut	DNN	Pre-Cut	DNN	Pre-Cut	DNN	
$h_{bb}Z_{ u u}$	9.8 fb	4.7 fb	6.3 fb	1.6 fb	18 fb	7.9 fb	9.6 fb	1.4 fb	
W+HF	310 fb	7.6 fb	440 fb	0.020 fb	420 fb	14 fb	680 fb	0.028 fb	
Z+HF	2900 fb	110 fb	2900 fb	$0.35~{ m fb}$	5700 fb	260 fb	5000 fb	0.72 fb	
tt	7.6 fb	0.16 fb	170 fb	0.041 fb	42 fb	0.22 fb	460 fb	0.020 fb	
single top	1.3 fb	0.035 fb	22 fb	$0.0091 { m ~fb}$	1.5 fb	$0.0057~{\rm fb}$	19 fb	0.0019 fb	
Wcl	1.1 fb	$0.026~{\rm fb}$	4.2 fb	$5.3 \times 10^{-4} \text{ fb}$	2.4 fb	$0.059~{\rm fb}$	7.4 fb	0.0010 fb	
Wll	3.7 fb	0.087 fb	19 fb	0.014 fb	13 fb	0.38 fb	49 fb	0.028 fb	
Zcl	1.4 fb	0.15 fb	4.7 fb	$0.0065 { m ~fb}$	3.3 fb	0.23 fb	9.0 fb	0.013 fb	
Zll	6.8 fb	0.78 fb	26 fb	$0.12 { m ~fb}$	22 fb	1.6 fb	80 fb	$0.20~{\rm fb}$	
VV'	68 fb	$3.9~{\rm fb}$	51 fb	0.084 fb	89 fb	4.7 fb	$65 { m ~fb}$	0.15 fb	
Signal Significance		23		84		58		140	