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Introduction 
• The Standard Model (SM) is already widely 
successful 

• One major component of the SM is 
electroweak (EW) symmetry breaking  

• Future colliders probe higher energies 
above this EW scale where some 
interesting SM physics occurs 

• Above this scale EW particles become 
massless. Must treat things as partons 



Our Goal 
• We want to study the nature of this EW 
symmetry breaking 

• The key to studying this is the Goldstone 
boson equivalence theorem (GBET) 
• At high energies the EW gauge bosons become 
massless and their longitudinal modes can be 
replaced by goldstones 

• Want to create an analysis to test GBET 
and thus EW symmetry  
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Electroweak (EW) Symmetry 

Broken Phase 
• U(1)EM 

• Massive VBs: 
•  Z, W± 

• Massless Photon: A 
• Massive Fermions 
• Higgs scalar h 

Unbroken Phase 
• SU(2)LxU(1)y 

• Massless VBs 
•  Wi, B 

• Massless Goldstone 
• Massless Fermions 
• Higgs doublet Φ 



Theory 
• The EW SM only has 3 free parameters.  
• Take your favorite set of parameters   (i.e. MZ, 
αEW, GF)   

• Calculate and fix couplings (g and g’) 
• Now take the limit as vev à 0 (MW à 0) 

boson scattering. One of the interesting things about longitudinal vector boson scattering

is that this process probes the quartic Goldstone boson coupling, which arises via the Higgs

potential:
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is the Higgs doublet, G
+
, G

0 are the Goldstone bosons, h is the Higgs boson, and v =

246 GeV is the Higgs vev. Hence, longitudinal vector boson scattering probes the shape

of the Higgs potential and the source of EWSB. Additionally, this process violated pertur-

bative unitarity without a Higgs boson [22–24]. However, with the observation of a light

Higgs boson with SM-like couplings to EW gauge bosons [35–38], longitudinal vector boson

scattering is e↵ectively unitarized with the violation of perturbative unitarity pushed to

multi-TeV energies [23, 34, 39–43], making it di�cult to observe.

As the above makes clear, the observation of EW symmetry restoration and the GBET

is simplest in processes that are dominated by longitudinally polarized gauge bosons. Such

a process is Higgs production in association with an EW gauge boson: qq̄
0
! V h with

V = W
±
, Z (V h). In the GBET, the qq̄

0
! V h production is equivalent to qq̄

0
! G

±,0
h

production (Gh) which arises from the Higgs kinetic term:

Lkin = |DµH|
2
. (2)

The kinetic term contains the trilinear interactions (a) Z � G
0
� h, W±

� G
⌥
� h and (b)

Z/��G
+
�G

�, W±
�G

⌥
�G

0. The interactions (a) contribute to the processes qq̄ ! VLh,

where the subscript L indicates a longitudinally polarized vector boson. The interactions

(b) contribute to pair production of longitudinally polarized gauge bosons qq̄ ! VLV
0
L
,

where V
0 = Z,W

±. However, the pair production of gauge bosons qq̄0 ! V V
0 is dominated

by transverse polarizations to high energy [44–46]. For the V h channel, the contribution

from transversely polarized vector bosons is suppressed since a portion of the Higgs doublet

already exists in the final state.

From this discussion, Higgs production in association with W
± or Z is a prime candidate

to observe EW restoration. In this paper we present an analysis strategy to do precisely

this. While this may seem straightforward, complications immediately arise when trying

to observe EW restoration at hadron colliders. Namely, the vector and Higgs bosons are
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Parton Level Vh Signal Strength 
• Want to calculate a signal strength at 
parton level between Vh and Gh  

• Calculate some helicity amplitudes, 
integrate over parton distribution functions 
(pdfs), take ratio of Pt distrubtions 
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FIG. 2: Signal strengths (black solid) µWh, (red dashed) µZh at
p
S = 14 TeV and (magenta

dotted) µWh, (blue dash-dot-dot) µZh at
p
S = 27 TeV.

To observe how quickly the Goldstone boson equivalence theorem converges in V h produc-

tion, we define signal strengths as ratios of Higgs transverse momentum, ph
T
, distributions:

µWh =
d�(pp ! W

±
h)/dph

T

d�(pp ! G±h)/dph
T

,

µZh =
d�(pp ! Zh)/dph

T

d�(pp ! G0h)/dph
T

. (10)

While
p
ŝ is the relevant quantity for the convergence of the GBET, we use ph

T
since it is more

easily reconstructable when there is missing energy from gauge boson decays. The signal

strengths are shown in Fig. 2 for both the HL-LHC with lab frame energy
p
S = 14 TeV

and the HE-LHC with
p
S = 27 TeV. While there is a very large di↵erence between the V h

and Goldstone boson plus Higgs distributions at low transverse momentum, they converge

fairly quickly. At transverse moment of ph
T
⇠ 400 GeV, the V h and Gh distributions agree

at the ⇠ 80% level.

Both µWh and µZh are in good agreement for the entire ph
T
range at the HL- and HE-LHC.

Hence, a uniform signal strength can be defined for both W
±
h and Zh:

µV h = µWh = µZh. (11)

Then both W
±
h and Zh distributions can be fit to the same parameter, making the combi-

nation of these measurements straightforward.

9



Why don’t we look at WW or WZ? 
• The GBET still applies  
• Comes down to cross sections polarization 
• For Vh production the cross sections are 
longitudinally dominated at high energy  

• While WV is transverse dominated 
• This means need to disentangle 
polarizations for WV. Which is somewhat 
tricky to do 



Wh Parton Helicity Dependence 
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Higgs mass mh, the µ
2 parameter, and the vev then take the limit v ! 0:

µ
2 = � v

2
��!
v!0

0, (8)

m
2
h
= 2� v2 ��!

v!0
0.

That is, we consider a massless Higgs doublet field consistent with the parameter relation-

ships in the SM.

Once the SU(2) ⇥ U(1) symmetry is restored, calculations should be performed in the

unbroken phase. The relevant degrees of freedom are the SU(2) gauge boson multiplet,

the hypercharge gauge boson, the Higgs doublet, the left-handed fermion doublets, and the

right-handed fermion singlets. All fields are massless. However, when considering collider

phenomenology a couple complications arise. First, vector bosons, Goldstones, and the

Higgs boson are not final state particles. Hence, their charges can be distinguished by the

detector via their decay products. This separates the components of the Higgs doublet and

the SU(2) ⇥ U(1) gauge boson multiplets. Second, each flavor of quark has a di↵erent pdf

and the pdfs distinguish the components of the quark doublets. Each of these e↵ects break

EW symmetry at the detector level.

With those considerations we compute Goldstone boson and Higgs production helicity

amplitudes with initial and final states considered component-by-component. For intermedi-

ate particles the massless gauge bosons of the unbroken SU(2)⇥U(1) are used. The relevant

helicity amplitudes for di-boson production are
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0
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+ 2T q

3 s
2
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As expected from the Goldstone boson equivalence theorem, the Goldstone boson production

amplitudes agree with high energy longitudinal gauge boson amplitudes in Eqs. (3) and (7).

8

From Eqs. (3) and (4) it is clear that double EW gauge boson production is not longitu-

dinally dominated. Indeed, even though both fully longitudinal and transverse polarizations

persist at high energy, as shown in Fig. 1(a,b) WW and WZ production are strongly dom-

inated by the transverse polarizations. Here we use CTEQ6L1 parton distribution functions

(pdfs) [50] implemented in LHAPDF [51] via ManeParse [52]. This is particularly striking in

WW production where at high energies 90�95% of the W s are transversely polarized, while

WZ production is 60� 70% transversely polarized. Hence, to find the longitudinally polar-

ized signal and observe EW restoration in qq̄
0
! V V

0, either the di↵erences in the angular

distributions of the gauge bosons must be exploited or their polarizations must be tagged,

which is very di�cult [46, 48, 53–57]. There is also an additional complication that the

gauge bosons are not final state particles and di↵erent gauge boson polarizations interfere

with each other [46, 49, 53–55].

These complications do not arise in EW gauge boson production in association with a

Higgs:

A(q+q̄� ! ZLh) = ± i
e
2
g
qZ

R

2 c2
W
s
2
W

sin ✓ +O(ŝ�1), (7)

A(q�q̄+ ! ZLh) = ± i
e
2
g
qZ

L

2 c2
W
s
2
W

sin ✓ +O(ŝ�1),

A(q�q̄
0
+ ! W

±
L
h) = �i

e
2

2
p
2 s2

W

sin ✓ +O(ŝ�1),

A(q±q̄⌥ ! Z±h) ⇠ A(q�q̄
0
+ ! W

±
L
h) ⇠ O(ŝ�1/2),

A(q+q̄
0
� ! W

±
± h) = A(q+q̄

0
� ! W

±
⌥ h) = 0.

The longitudinal polarizations persist at high energy while transverse polarizations decrease

with energy. This is even more clear in Figs. 1(c,d), where the transverse polarizations

make sub-percent level contributions to the total rate at high transverse momentum. Since

qq̄
0
! V h is quickly dominated by longitudinally polarized gauge bosons, there is no need

to use polarization tagging to get a longitudinally enriched signal. Hence, this channel is a

prime candidate to observe EW restoration and the focus of our phenomenological analysis.

B. EW Restoration

To observe EW restoration, the SU(2) ⇥ U(1) symmetric phase with v = 0 should be

considered. In this phase, the EW gauge bosons and SM fermions are massless. To obtain

6
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WZ Parton Helicity Dependence 
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WW Parton Helicity Dependence 
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Parton Level Signal Strength 
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Experimental Challenges 
• In a collider experiment we know the Higgs 
and Z both decay 

• In the unbroken phase the massless 
Goldstones do not decay 

• How do we compare this 2à2 process with 
a 2à4 process? 

• We will do MC simulation so how do we 
precisely determine the uncertainties 



Experimental Challenges 
• Get the hV cross section by using likelihood 
• We have to worry about pdfs, showering, 
hadronization and detector effects.  

• We sweep all of that into an efficiency matrix 
• We don’t actually measure s of the system 
• Need to find a good placeholder. 
•   PTh and MVh seem like good candidates. They 
should measure the energy going through the 
hVV/hVG vertex 
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Channel Breakdown 
• The analysis considers three decay channels 

•    

•    
  
•    

 
•  In each of these decay channels we consider 2 jet 
and 3 jet final states giving a total of 6 categories 

Finally, we use the global likelihood across all bins

L(µ1
V h

, µ
2
V h

, . . .) =
Y

i

Li(µ
1
V h

, µ
2
V h

, . . .)Pois(nobs,i|Si +Bi), (14)

where Pois(x|y) is a conditional Poisson distribution and Si is the expected number of signal

events in the ith bin. Now, given a number of observed events nobs,i, Eq. (14) is maximized

to determine the binned signal strengths µi

V h
.

IV. COLLIDER ANALYSIS

We now turn to extracting our signal from background. To get larger rates and clean

signals, we consider h ! bb and leptonic decays of the EW gauge boson. Signal events are

decomposed into six categories:

1. Two lepton final states, Zh ! `
+
`
�
bb̄ , with either

(a) exactly two jets from the Higgs or

(b) three or more jets.

2. One lepton final states, Wh ! `⌫bb̄, with either

(a) exactly two jets from the Higgs or

(b) exactly three jets.

3. Zero lepton final states, Zh ! ⌫⌫bb̄, with either

(a) exactly two jets from h ! bb or

(b) exactly three jets.

Note, for each signal with di↵erent multiplicities of jets, the e�ciency matrix ✏ij in Eq. (13)

must be recalculated to map onto the partonic qq̄ ! V h event.

The major backgrounds are: QCD production of V + ll, V+HF, V + cl as well as top

pair, single top and vector boson pair. Here l = u, d, s, g, and HF indicates “heavy flavor”:

bb, bc, cc, bl. For the zero and one-lepton signals, we include backgrounds from missing

leptons. The missing lepton rate is estimated by using the default setting of DELPHES3.
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Backgrounds for   
• Z+jet and W+jet 

• Heavy flavor (HF) - At least one b jet 
• Charm (cj) – at least one c jet (but no b jets) 
• Light (lj) - anything else 

• Single top production 
• Top pair production 
• Diboson pair production 
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events in the ith bin. Now, given a number of observed events nobs,i, Eq. (14) is maximized

to determine the binned signal strengths µi

V h
.

IV. COLLIDER ANALYSIS

We now turn to extracting our signal from background. To get larger rates and clean

signals, we consider h ! bb and leptonic decays of the EW gauge boson. Signal events are

decomposed into six categories:

1. Two lepton final states, Zh ! `
+
`
�
bb̄ , with either

(a) exactly two jets from the Higgs or

(b) three or more jets.

2. One lepton final states, Wh ! `⌫bb̄, with either

(a) exactly two jets from the Higgs or

(b) exactly three jets.

3. Zero lepton final states, Zh ! ⌫⌫bb̄, with either

(a) exactly two jets from h ! bb or

(b) exactly three jets.

Note, for each signal with di↵erent multiplicities of jets, the e�ciency matrix ✏ij in Eq. (13)

must be recalculated to map onto the partonic qq̄ ! V h event.

The major backgrounds are: QCD production of V + ll, V+HF, V + cl as well as top

pair, single top and vector boson pair. Here l = u, d, s, g, and HF indicates “heavy flavor”:

bb, bc, cc, bl. For the zero and one-lepton signals, we include backgrounds from missing

leptons. The missing lepton rate is estimated by using the default setting of DELPHES3.
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14 TeV 27 TeV

nj = 2 nj = 3 nj = 2 nj = 3

Pre-Cut DNN Pre-Cut DNN Pre-Cut DNN Pre-Cut DNN

hbbZ`` 1.1 fb 0.22 fb 1.1 fb 0.23 fb 2.0 fb 0.87 fb 1.6 fb 1.2 fb

Z+HF 300 fb 1.4 fb 530 fb 3.3 fb 580 fb 16 fb 780 fb 120 fb

tt 27 fb 0.14 69 fb 0.095 fb 92 fb 1.6 fb 180 fb 19 fb

single top 0.85 fb 0.0036 fb 3.5 fb 0.0041 fb 2.9 fb 0.047 fb 11 fb 1.0 fb

Zcl 0.18 0.0036 fb 2.1 fb 0.025 fb 0.75 fb 0.034 fb 6.4 fb 0.94 fb

Zll 0.68 0.019 fb 13 fb 0.20 fb 2.0 fb 0.096 fb 27 fb 4.1 fb

V V
0 4.8 fb 0.026 fb 5.4 fb 0.051 fb 6.5 fb 0.22 fb 7.8 fb 1.5 fb

Signal Significance 9.4 6.5 25 13

TABLE I: Cut flow table and signal significance after the DNN for the two lepton categories. The

significances correspond to 3 ab�1 at 14 TeV and 15 ab�1 at 27 TeV. All backgrounds include

possible decays leading to events with and without missing leptons.

HL-LHC and 15 ab�1 for the HE-LHC. We use the the asymptotic formula for a discovery

significance with Poisson statistics

� =

s

2

✓
(Ns +Nb)⇥ log

✓
1 +

Ns

Nb

◆
�Ns

◆
, (21)

where Ns, Nb are the number of signal and background events, respectively. It is clear that

background and signal are well separated.

In Fig. 3 we show the reconstructed vector boson pT distributions after the DNN selection

for all six categories. The background is cumulative, and the signal is overlaid. At high

energies the signal and background separation is better. This is precisely where we expect

to see EW restoration.

V. RESULTS

To fit the signal strengths in Eq. (11) we perform pseudo-experiments to sample the

binned p
h

T
distribution. After the collider analysis of the previous section, we have a sample

of signal and background events. That sample is used to create a probability density function

14



Simulation Details 
• There are lots of backgrounds to consider for 
each channel  

• Use MG5/Pythia/Delphes Chain 
• We consider one additional jet matching   
• Use DNN to separate signal  and background 

• Cheat and keep track of parton level information 
to get efficiency matrix 
• Simply maps bins at detector level to bins at parton 

level. Includes all detector/parton effects  

• At 27 TeV [70]:

p
j

T
� 30 GeV . (19)

Finally, since our signal is rich in b-quarks, we also use a b tagging rate of 0.70 with mis-tag

rates of 0.125 for charm jets and 0.003 for light jets [71].

B. Classification

To classify signal from background, we use “pre-cuts” followed by a DNN. The pre-cuts

are basic multiplicity and invariant mass cuts to help separate signal and background:

• For the two lepton signals (n` = 2) we require exactly two same flavor, opposite sign

leptons that reconstruct the Z mass |m`` �mZ |  10 GeV, where m`` is the di-lepton

invariant mass. In addition, we require at least two jets (nj � 2) passing the cuts in

Eqs. (16,18,19)

• For both the zero (n` = 0) and one lepton (n` = 1) signal we require either two or

three jets (nj = 2, 3) to pass the cuts in Eqs. (16,18,19).

For all signals we require exactly two b-tagged jets (nb = 2).

After events pass the pre-cuts, a DNN is used to further classify signal and background.

The inputs of the DNN are high-level reconstructed variables and are detailed in Appendix A.

The DNN is a binary classifier consisting of three hidden layers with 210, 212, and 210 nodes.

We adopt LeakyReLU [72] for non-linearity, use batch normalization between layers, and the

output layer uses softmax to create a probability. We use cross entropy as the loss function

with an L2 penalty:

L = �ys log p� (1� ys) log(1� p) + � k W k
2
, (20)

where ys is the signal indicator with ys = 1 for signal and ys = 0 for background, p is the

predicted signal probability, and k W k
2 is the matrix norm of the weight matrices. While

the same DNN structure is used for all six categories, the L2 penalty value � changes.

Cut flow tables and signal significances are given in Tab. I for two lepton categories,

Tab. II for the one lepton categories, and Tab. III for the zero lepton category at both 14

and 27 TeV. The significances are calculated for the benchmark luminosities of 3 ab�1 for the

13



Event Numbers after DNN: 2 lepton 



Event Numbers after DNN: 1 lepton 



Event Numbers after DNN: 0 lepton 



Signal Strength: 2 Lepton 



Signal Strength: 1 Lepton 



Signal Strength: 0 Lepton 



Signal Strength: Combined 

(a) (b)

FIG. 5: Combined central values across all categories and 68% CL for extracted signal strengths

µV h at (a) 14 TeV with 3 ab�1 and (b) 27 TeV with 15 ab�1. Black dashed lines are the partonic

level prediction, the red bars are statistical uncertainty, the green bars are statistical and a 5%

systematic uncertainty added in quadrature.

category to find the central value and 68% CL for µV h. These results are shown in Fig. 5 for

both (a) the HL-LHC and (b) the HE-LHC, with the predicted partonic level signal strength

overlaid. As can be seen, the extracted central value is indistinguishable from the prediction.

In an optimistic scenario, the systematic uncertainty on V h production is expected to be

5% [70]. The red uncertainty bands show the statistical uncertainty, and the green bands

show statistical and a 5% systematic uncertainty added in quadrature.

At low p
h

T
, the signal strength is significantly far from one and then converges to one at

higher energies, as expected. Indeed, in the last overflow bin, we find the central value of

the signal strength and 68% CL to be:

µV h =

8
><

>:

1± 0.4 at the HL� LHC

1± 0.06 at the HE� LHC
. (23)

That is, the signal agrees with the EW restoration prediction at 40% at the HL-LHC and

6% at the HE-LHC. Hence, the V h rate converges to the expected rate with EW symmetry

restored. This measurable convergence indicates empirically that the longitudinal modes

can be replaced with the Goldstone bosons, and EW restoration can be observed at high

energies.
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Delta Chi Square 



Chi Square 
• Chi square per degree of freedom is a standard and 

simple test 
• Use standard Poisson statistics to calculate 

  
•  Lets look at the results but keep in mind we need a 

slightly better statistical test. 

A. Statistical Test of EW Restoration

To test how well EW restoration is being observed, one needs to measure how the con-

vergence is improving by using higher and higher energy bins. At low p
h

T
bins, although the

statistical error is small, the Goldstone and gauge boson distributions do not agree. As one

moves towards higher ph
T
bins, while the two distributions converge, the statistical errors also

increase, as shown in Figs. 4 and 5. In this section we explore statistical measures of the

restoration and discuss their implications, taking into account both the theory convergence

as well as the experimental uncertainties. The goal is, assuming that the SM is a good

description of the data, we want to test the agreement between the qq̄0 ! V h and qq̄
0
! Gh

(µj

V h
= 1) production as a function of ph

T
.

As a first choice, using the language that the high energy physics community is more

familiar with, we consider using “�2 per degree of freedom” as a function of pT bins. One

generically anticipates this quantity to decrease as an indicator of better convergence. After

using the method in the previous sections in separating signal and background, we now

have six-category samples, post-selection cuts, that have the significance of our analysis as

a function of ph
T
. One can define “�2 per degree of freedom”3:

��
2
m
=

1

m

mX

l=1

log

 
Pois(nobs,l|

P
j
��

Gh

j
✏ljL+Bl)

Pois(nobs,l|Sl +Bl)

!
, (24)

where we sum over the m ranked p
h

T
bins (from low to high). Using the methods of the

previous section, we perform 10,000 pseudo-experiments. The results are shown in the left

panel of Fig. 6. We show the median over all pseudo-experiments as well as the band where

68% and 95% of the pseudo-experiments lie. From the figure we can see, as anticipated, the

��
2
m
decreases as one includes more high p

h

T
bins.

However, we note here that ��
2
m
has some disadvantages in measuring restoration. First,

for the low p
h

T
bins, each bin contributes to a sizable ��

2 since the Gh and V h hypothesis

are in poor agreement and statistical uncertainty is small. At high p
h

T
, the statistical un-

certainties increase. Hence, even if the Gh and V h distributions do not converge, as more

bins are averaged over ��
2
m

will decrease. In other words, even if the higher bins contain

no separation power, e.g. the background uncertainty being infinitely larger than the signal

3 Here we use the log-likelihood ratio as delta chi-square for each bin.
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Kullback-Leibler (KL) Divergence 



KL Divergence  

(a) (b)

FIG. 6: The �2 per degree of freedom ��
2
m defined in Eq. (24) (left panel) KL divergence defined

in Eq. 27 (right panel) for 14 TeV with 3 ab�1 and 27 TeV with 15 ab�1. The back (red dashed)

line represents the median values of the 27 TeV (14 TeV) results, and the yellow and green bands

represent the values where 68% and 95% of pseudo-experiments lie, respectively.

strength, the ��
2
m

decreases. This reflects that ��
2
m

measures the agreement between two

hypotheses: as the uncertainties increase, the error bars overlap, and the hypotheses are in

“good agreement.” However, to measure EW restoration, the convergence of V h and Gh

must be measured and ��
2
m
is not a good measure of convergence.

As can be seen, the measurement of the EW restoration is not a typical particle physics

test. The issue is that we want to measure the convergence of two hypotheses with energy, not

just determine how well they agree globally. Ideally, the measure should contrast di↵erent

hypotheses for a given experimental data set with proper weight for each bin according to

the “information” contained there. We turn to Shannon’s information theory and find that

generically �p log p measures the information of a distribution p. While there might be

an equivalent or better definition outside of our scope, we use a modified Kullback-Leibler

(KL) divergence. KL divergence is a commonly used quantity contrasting the information

between two di↵erent distributions, and often plays the role of loss function for machine

learning. The KL divergence tests the information di↵erence between two hypotheses. To

do this, for each pseudo-experiment we first define properly normalized probability for each

bin for the V h hypothesis

p
m

i
=

Y

6 signal
categories

Pois(nobs,i|Si +Bi)P
m

l=1 Pois(nobs,l|Sl +Bl)
, (25)
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where the i  m are bin numbers with increasing p
h

T
. We have assumed independent event

samples, and so have taken a product of probabilities across all signal categories. Restricting

ourselves to p
h

T
 p

h

T,m
with p

h

T,m
being the central value of ph

T
in the mth bin, pm

i
is the

probability of observing nobs,i events in bin i given a SM hypothesis of Si+Bi bins. The Gh

hypothesis is equivalent to signal strengths of one: µV h = 1. Using the e�ciency matrices

✏ij we can define an analogue conditional probability for the Gh hypothesis:

q
m

i
=

Y

6 signal
categories

Pois(nobs,i|
P

j
��

Gh

j
✏ijL+Bi)P

m

l=1 Pois(nobs,l|
P

j
��

Gh

j
✏ljL+Bl)

, (26)

where the sum over j is over all bins and not restricted to bins less than p
h

T,m
. The KL

divergence for the first m bins is then:

KLm =
mX

i=1

p
m

i
log

✓
p
m

i

q
m

i

◆
. (27)

Now the interpretation of the KL-divergence is clear. If the two hypotheses describe the

data equally well, the log goes to zero and the KL divergence is zero. The KL-divergence

has a similar property as the Gibbs free energy, being positive definite. Hence, when the

agreement of the two hypotheses is worse, KLm is larger. As more bins are included, we

expect the EW restoration to describe data better and the KL divergence should approach

zero.

When the two hypotheses do not agree, the weighted sum in Eq. (27) guarantees that

the largest contributions come from bins for the conditional probabilities p
m

i
are largest.

Hence, the KL divergence contains more information from ��
2
m

and is expected to be a

better measure of convergence. In Fig. 6 we show the di↵erential KL divergence, KLm. We

show the median over all pseudo-experiments as well as the band where 68% and 95% of

the pseudo-experiments lie. As can be clearly seen, whereas the �
2 per degree of freedom

test began to plateau at high energies, the KL-divergence decrease more steadily. This more

readily shows that the agreement of the V h and Gh hypotheses continues to get better at

high p
h

T
and we observe EW restoration.

We want to emphasize here that the convergence between V h and Gh distributions is

directly represented by the fact that ��
2
m

and KLm decrease as higher and higher ph
T
bins

are included. We would like to note that somewhat counter-intuitively the 14 TeV statistical

tests seem to be “better” than the 27 TeV results. That is, the 14 TeV values are lower. This
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expect the EW restoration to describe data better and the KL divergence should approach
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When the two hypotheses do not agree, the weighted sum in Eq. (27) guarantees that

the largest contributions come from bins for the conditional probabilities p
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are largest.

Hence, the KL divergence contains more information from ��
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and is expected to be a

better measure of convergence. In Fig. 6 we show the di↵erential KL divergence, KLm. We

show the median over all pseudo-experiments as well as the band where 68% and 95% of

the pseudo-experiments lie. As can be clearly seen, whereas the �
2 per degree of freedom

test began to plateau at high energies, the KL-divergence decrease more steadily. This more

readily shows that the agreement of the V h and Gh hypotheses continues to get better at

high p
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T
and we observe EW restoration.

We want to emphasize here that the convergence between V h and Gh distributions is

directly represented by the fact that ��
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and KLm decrease as higher and higher ph
T
bins

are included. We would like to note that somewhat counter-intuitively the 14 TeV statistical

tests seem to be “better” than the 27 TeV results. That is, the 14 TeV values are lower. This
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• Small KL implies agreement with hypothesis  
• Expect KL to decrease as we include more PT bins 
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Conclusions 
• We have shown the capabilities of HL-LHC and 
HE-LHC in observing the GBET and Electroweak 
restoration. 

• We find for pt
h > 400 GeV   the G h and the V h 

distributions agree at about 80%. 
• The KL divergence shows that the two 
hypotheses agree at high energy. 

• HL can confirm electroweak restoration to 40%. 
• HE can confirm it to 6%. 



Thank You! 
Any Questions? 



Z h and W h Amplitudes  

From Eqs. (3) and (4) it is clear that double EW gauge boson production is not longitu-

dinally dominated. Indeed, even though both fully longitudinal and transverse polarizations

persist at high energy, as shown in Fig. 1(a,b) WW and WZ production are strongly dom-

inated by the transverse polarizations. Here we use CTEQ6L1 parton distribution functions

(pdfs) [50] implemented in LHAPDF [51] via ManeParse [52]. This is particularly striking in

WW production where at high energies 90�95% of the W s are transversely polarized, while

WZ production is 60� 70% transversely polarized. Hence, to find the longitudinally polar-

ized signal and observe EW restoration in qq̄
0
! V V

0, either the di↵erences in the angular

distributions of the gauge bosons must be exploited or their polarizations must be tagged,

which is very di�cult [46, 48, 53–57]. There is also an additional complication that the

gauge bosons are not final state particles and di↵erent gauge boson polarizations interfere

with each other [46, 49, 53–55].

These complications do not arise in EW gauge boson production in association with a

Higgs:

A(q+q̄� ! ZLh) = ± i
e
2
g
qZ

R

2 c2
W
s
2
W

sin ✓ +O(ŝ�1), (7)

A(q�q̄+ ! ZLh) = ± i
e
2
g
qZ

L

2 c2
W
s
2
W

sin ✓ +O(ŝ�1),

A(q�q̄
0
+ ! W

±
L
h) = �i

e
2

2
p
2 s2

W

sin ✓ +O(ŝ�1),

A(q±q̄⌥ ! Z±h) ⇠ A(q�q̄
0
+ ! W

±
L
h) ⇠ O(ŝ�1/2),

A(q+q̄
0
� ! W

±
± h) = A(q+q̄

0
� ! W

±
⌥ h) = 0.

The longitudinal polarizations persist at high energy while transverse polarizations decrease

with energy. This is even more clear in Figs. 1(c,d), where the transverse polarizations

make sub-percent level contributions to the total rate at high transverse momentum. Since

qq̄
0
! V h is quickly dominated by longitudinally polarized gauge bosons, there is no need

to use polarization tagging to get a longitudinally enriched signal. Hence, this channel is a

prime candidate to observe EW restoration and the focus of our phenomenological analysis.

B. EW Restoration

To observe EW restoration, the SU(2) ⇥ U(1) symmetric phase with v = 0 should be

considered. In this phase, the EW gauge bosons and SM fermions are massless. To obtain
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WZ, WW, and ZZ Amplitudes 

gauge boson production modes are

A(q+q̄� ! W
+
L
W

�
L
) = �i

e
2
Qq

2 c2
W

sin ✓ +O(ŝ�1) ,

A(q�q̄+ ! W
+
L
W

�
L
) = i

e
2
T

q

3

6 c2
W
s
2
W

�
3 c2

W
+ 2T q

3 s
2
W

�
sin ✓ +O(ŝ�1) , (3)

A(q�q̄
0
+ ! W

±
L
ZL) = �i

e
2
T

q

3
p
2s2

W

sin ✓ +O(ŝ�1) ,

A(q±q̄
0
⌥ ! ZLZL) = O(ŝ�1) ,

where
p
ŝ is the partonic center of mass energy, the subscript L on EW gauge bosons

indicates longitudinal polarization, and the subscripts on the quarks indicate quark helicity.

For W
+
W

� production ✓ is the angle between W
+ and initial state quark, and for WZ

production ✓ is the angle between the W and the initial state quark. Qq is the quark q’s

charge, T q

3 is the quark q’s isospin, and cW = cos ✓W , sW = sin ✓W is the weak mixing angle.

As expected, the fully longitudinal EW gauge boson pair production modes W
+
W

�

and WZ persist at high energy. However, so do transversely polarized gauge bosons with

opposite helicities:

A(q�q̄+ ! W
+
±W

�
⌥ ) = ⌥i

e
2

2 s2
W

1 + 2T q

3 cos ✓

1± cos ✓
sin ✓ +O(ŝ�1) , (4)

A(q�q̄
0
+ ! W

±
±Z⌥) = ⌥i

e
2

p
2 s2

W
cW

⇣
g
q
0
Z

L
(1 + cos ✓) + g

qZ

L
(1� cos ✓)

⌘ sin ✓

1± cos ✓
+O(ŝ�1) ,

A(q�q̄+ ! Z+Z�) = 2 i
e
2

s
2
W
c
2
W

g
qZ

L

2

r
1� cos ✓

1 + cos ✓
+O(ŝ�1) ,

A(q+q̄� ! Z+Z�) = �2 i
e
2

s
2
W
c
2
W

g
qZ

R

2

r
1 + cos ✓

1� cos ✓
+O(ŝ�1) ,

where the subscript ± on EW gauge bosons indicate the transverse helicities, for ZZ final

state ✓ is the angle between the initial state quark and Z+, and

g
qZ

L
= T

q

3 �Qq s
2
W
, and g

qZ

R
= �Qq s

2
W
. (5)

All other amplitudes are either zero or suppressed at high energies:

A(q±q̄⌥ ! W
±
±W

⌥
L
) ⇠ A(q�q̄

0
+ ! W

±
±ZL) ⇠ A(q�q̄

0
+ ! Z±W

±
L

⇠ A(q±q̄⌥ ! Z±ZL) ⇠ O(ŝ�1/2) ,

A(q±q̄⌥ ! W
+
±W

�
± ) ⇠ A(q�q̄

0
+ ! W

±
±Z±) ⇠ A(q±q̄⌥ ! Z±Z±) ⇠ O(ŝ�1) ,

A(q+q̄� ! W
+
±W

�
⌥ ) = A(q+q̄

0
� ! W

±
�
Z�0) = 0. (6)
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A(q±q̄⌥ ! W
+
±W

�
± ) ⇠ A(q�q̄

0
+ ! W

±
±Z±) ⇠ A(q±q̄⌥ ! Z±Z±) ⇠ O(ŝ�1) ,
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A(q±q̄⌥ ! W
+
±W

�
± ) ⇠ A(q�q̄

0
+ ! W

±
±Z±) ⇠ A(q±q̄⌥ ! Z±Z±) ⇠ O(ŝ�1) ,
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A(q+q̄� ! W
+
±W

�
⌥ ) = A(q+q̄

0
� ! W

±
�
Z�0) = 0. (6)

5



Relevant Goldstone Amplitudes 

Higgs mass mh, the µ
2 parameter, and the vev then take the limit v ! 0:

µ
2 = � v

2
��!
v!0

0, (8)

m
2
h
= 2� v2 ��!

v!0
0.

That is, we consider a massless Higgs doublet field consistent with the parameter relation-

ships in the SM.

Once the SU(2) ⇥ U(1) symmetry is restored, calculations should be performed in the

unbroken phase. The relevant degrees of freedom are the SU(2) gauge boson multiplet,

the hypercharge gauge boson, the Higgs doublet, the left-handed fermion doublets, and the

right-handed fermion singlets. All fields are massless. However, when considering collider

phenomenology a couple complications arise. First, vector bosons, Goldstones, and the

Higgs boson are not final state particles. Hence, their charges can be distinguished by the

detector via their decay products. This separates the components of the Higgs doublet and

the SU(2) ⇥ U(1) gauge boson multiplets. Second, each flavor of quark has a di↵erent pdf

and the pdfs distinguish the components of the quark doublets. Each of these e↵ects break

EW symmetry at the detector level.

With those considerations we compute Goldstone boson and Higgs production helicity

amplitudes with initial and final states considered component-by-component. For intermedi-

ate particles the massless gauge bosons of the unbroken SU(2)⇥U(1) are used. The relevant

helicity amplitudes for di-boson production are
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As expected from the Goldstone boson equivalence theorem, the Goldstone boson production

amplitudes agree with high energy longitudinal gauge boson amplitudes in Eqs. (3) and (7).
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14 TeV 27 TeV

nj = 2 nj = 3 nj = 2 nj = 3

Pre-Cut DNN Pre-Cut DNN Pre-Cut DNN Pre-Cut DNN

hbbZ`` 1.1 fb 0.22 fb 1.1 fb 0.23 fb 2.0 fb 0.87 fb 1.6 fb 1.2 fb

Z+HF 300 fb 1.4 fb 530 fb 3.3 fb 580 fb 16 fb 780 fb 120 fb

tt 27 fb 0.14 69 fb 0.095 fb 92 fb 1.6 fb 180 fb 19 fb

single top 0.85 fb 0.0036 fb 3.5 fb 0.0041 fb 2.9 fb 0.047 fb 11 fb 1.0 fb

Zcl 0.18 0.0036 fb 2.1 fb 0.025 fb 0.75 fb 0.034 fb 6.4 fb 0.94 fb

Zll 0.68 0.019 fb 13 fb 0.20 fb 2.0 fb 0.096 fb 27 fb 4.1 fb

V V
0 4.8 fb 0.026 fb 5.4 fb 0.051 fb 6.5 fb 0.22 fb 7.8 fb 1.5 fb

Signal Significance 9.4 6.5 25 13

TABLE I: Cut flow table and signal significance after the DNN for the two lepton categories. The

significances correspond to 3 ab�1 at 14 TeV and 15 ab�1 at 27 TeV. All backgrounds include

possible decays leading to events with and without missing leptons.

HL-LHC and 15 ab�1 for the HE-LHC. We use the the asymptotic formula for a discovery

significance with Poisson statistics

� =

s

2

✓
(Ns +Nb)⇥ log

✓
1 +

Ns

Nb

◆
�Ns

◆
, (21)

where Ns, Nb are the number of signal and background events, respectively. It is clear that

background and signal are well separated.

In Fig. 3 we show the reconstructed vector boson pT distributions after the DNN selection

for all six categories. The background is cumulative, and the signal is overlaid. At high

energies the signal and background separation is better. This is precisely where we expect

to see EW restoration.

V. RESULTS

To fit the signal strengths in Eq. (11) we perform pseudo-experiments to sample the

binned p
h

T
distribution. After the collider analysis of the previous section, we have a sample

of signal and background events. That sample is used to create a probability density function
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14 TeV 27 TeV

nj = 2 nj = 3 nj = 2 nj = 3

Pre-Cut DNN Pre-Cut DNN Pre-Cut DNN Pre-Cut DNN

hbbW`⌫ 12 fb 6.1 fb 7.3 fb 0.38 fb 19 fb 9.6 fb 9.8 fb 1.2 fb

W+HF 580 fb 38 fb 640 fb 0.035 fb 790 fb 43 fb 940 fb 0.33 fb

Z+HF 310 fb 8.5 fb 380 fb 9.7⇥ 10�5 fb 640 fb 21 fb 670 fb 0.048 fb

tt 150 fb 15 fb 560 fb 0.30 fb 580 fb 28 fb 1500 fb 0.93 fb

single top 11 fb 1.1 fb 68 fb 0.053 fb 36 fb 1.7 fb 100 fb 0.12 fb

Wcl 4.9 fb 0.46 fb 12 fb 2.5⇥ 10�3 fb 8.0 fb 0.56 fb 19 fb 0.027 fb

Wll 10 fb 1.2 fb 36 fb 0.021 fb 28 fb 2.7 fb 92 fb 0.34 fb

Zcl 0.15 fb 4.2⇥ 10�3 fb 0.51 fb 0 fb 0.62 fb 0.012 fb 1.8 fb 7.2⇥ 10�5 fb

Zll 0.49 fb 0.014 fb 2.0 fb 4.7⇥ 10�5 fb 1.5 fb 0.032 fb 5.2 fb 6.0⇥ 10�4 fb

V V
0 34 fb 2.0 fb 28 fb 0.015 fb 41 fb 1.9 fb 33 fb 0.11 fb

Signal Significance 40 28 120 98

TABLE II: Cut flow table and signal significance after the DNN for the one lepton categories. The

significances correspond to 3 ab�1 at 14 TeV and 15 ab�1 at 27 TeV. All backgrounds include

possible decays leading to events with and without missing leptons.

(PDF) for the signal and background p
h

T
distribution. The total number of events is sampled

according to a Gaussian distribution with the mean ⌫ = Stot + Btot and standard deviation

� =
p
⌫, where the total number of expected signal and background events are

Stot =
X

i

Si, Btot =
X

i

Bi, (22)

respectively, and Si, Bi are the expected number of signal and background events in the ith

bin after the DNN, respectively. The total number of events is then distributed according

to the ph
T
PDF. In practice, instead of the Higgs transverse momentum, we use the di-lepton

pT for two lepton categories. At tree level, this is equivalent to p
h

T
for the V h signal. For

the zero and one lepton categories, we do use the reconstructed Higgs pT .

For each of the six categories, we perform these pseudo-experiments at 14 TeV and 27

TeV. Then the p
h

T
distribution is repeatedly sampled for each pseudo-experiment. These

samples determine the number of observed events nobs,i for each bin in Eqs. (12,13,14). In
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14 TeV 27 TeV

nj = 2 nj = 3 nj = 2 nj = 3

Pre-Cut DNN Pre-Cut DNN Pre-Cut DNN Pre-Cut DNN

hbbZ⌫⌫ 9.8 fb 4.7 fb 6.3 fb 1.6 fb 18 fb 7.9 fb 9.6 fb 1.4 fb

W+HF 310 fb 7.6 fb 440 fb 0.020 fb 420 fb 14 fb 680 fb 0.028 fb

Z+HF 2900 fb 110 fb 2900 fb 0.35 fb 5700 fb 260 fb 5000 fb 0.72 fb

tt 7.6 fb 0.16 fb 170 fb 0.041 fb 42 fb 0.22 fb 460 fb 0.020 fb

single top 1.3 fb 0.035 fb 22 fb 0.0091 fb 1.5 fb 0.0057 fb 19 fb 0.0019 fb

Wcl 1.1 fb 0.026 fb 4.2 fb 5.3⇥ 10�4 fb 2.4 fb 0.059 fb 7.4 fb 0.0010 fb

Wll 3.7 fb 0.087 fb 19 fb 0.014 fb 13 fb 0.38 fb 49 fb 0.028 fb

Zcl 1.4 fb 0.15 fb 4.7 fb 0.0065 fb 3.3 fb 0.23 fb 9.0 fb 0.013 fb

Zll 6.8 fb 0.78 fb 26 fb 0.12 fb 22 fb 1.6 fb 80 fb 0.20 fb

V V
0 68 fb 3.9 fb 51 fb 0.084 fb 89 fb 4.7 fb 65 fb 0.15 fb

Signal Significance 23 84 58 140

TABLE III: Cut flow table and signal significance after the DNN for the zero lepton categories.

The significances correspond to 3 ab�1 at 14 TeV and 15 ab�1 at 27 TeV. All backgrounds include

possible decays leading to events with and without missing leptons.

Eqs. (12,13,14), Si and Bi are the same as used to set the mean and standard deviation for

nobs,i sampling. For each pseudo-experiment, we maximize the likelihood function Eq. (14)

to find the best fit value for the signal strength and then determine the 68% CL on µV h. For

each category, we average the the best fit values and error bars over all pseudo-experiments.

In Fig. 4 we show the signal strength mean value and 68% CL for each of the 6 categories

at 14 and 27 TeV with 3 ab�1 and 15 ab�1 of data, respectively. As expected, all categories

at a given lab frame energy
p
S have the same central values for µV h. Also, the two jet

categories have much smaller uncertainties than the three jets, indicating little information

is gained from the three jet categories.

Now that we have the individual signal strengths, we can combine them. To do this,

we create a “global” likelihood that is the product of the likelihoods for the six signal

categories. Then we perform the same procedure above with pseudo-experiments for each

17


