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Motivation

No obvious signs of new light states at LHC — parametrize BSM 
effects with SM-EFT = SMEFT

ℒ = ℒSM + ∑
d

∑
i

c(d)
i

Λd−4
𝒪(d)

i (Q, uc, dc, L, ec, H, Dμ, Fμν⋯)

write down all operators, lowest mass dimension terms 
dominate in the IR

Odd dimensions always violate B or L, so focus has been on dim-6 
(~60 operators)
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Motivation

Top data

Field redefinitions are WHY theory CONSISTENCY is essential

B anomalies

/multi-boson

Partial image credit: I Brivio.

Q(1)
qq

prst
= (q̄p�µqr)(q̄s�µqt),

Q(3)
qq

prst
= (q̄p�µ⌧ Iqr)(q̄s�µ⌧Iqt),

Q uu
prst

= (ūp�µur)(ūs�µut),

Q(8)
ud
prst

= (ūp�µTAur)(d̄s�µTAdt),

Q(1)
ud
prst

= (ūp�µur)(d̄s�µdt),

We are looking for few % to 10’s% effects in SMEFT.

Michael Trott, Niels Bohr Institute 14a

Integration by parts (IBP) or field 
redefinitions (EOM redundancy)

reshuffle operators but don’t change physics 

ϕi → ϕi +
δϕi

Λ2
+ ⋯
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redefinitions (EOM redundancy)

reshuffle operators but don’t change physics 
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Ex: Bμ → Bμ +
2
g′ 

C(1)
Hℓ

Λ2
(L̄ γμ L) removes   in favor of , , ,  𝒬(1)

Hℓ 𝒬(1)
Hq 𝒬He 𝒬Hu

(∂ρBρμ)(L̄ γμ L) , etc.
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Integration by parts (IBP) or field 
redefinitions (EOM redundancy)

reshuffle operators but don’t change physics 

Therefore: SMEFT analysis requires working with a complete 
‘basis’ of operators. Often “Warsaw basis”
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Motivation
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Operators impact 
multiple processes: 

Global approach 
needed



Motivation

How does SMEFT contribute? State of the art:

|A |2 = |ASM |2 +
2Re(ASM A6)

Λ2
+

|A6 |2

Λ4
+ ⋯
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Motivation

How does SMEFT contribute? State of the art:

|A |2 = |ASM |2 +
2Re(ASM A6)

Λ2
+

|A6 |2

Λ4
+ ⋯

Why would you ever go beyond   ?1/Λ2

Interference piece, usually the 
largest effect

“New physics squared”;
Higher order in 1/Λ

5



• Uncertainty: To know error on   piece, we should know next order1/Λ2
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• Uncertainty: To know error on   piece, we should know next order1/Λ2

6

• Interference can be suppressed: e.g. if there is a mismatch in 
the helicity of the SM and the  operators1/Λ2

Classic example:   and dijets𝒪G = fABCGA
μνGB,νρGC,μ

ρ

SM and   produce different helicity gluons!  
                                  No interference, so first effect is at   

𝒪G
(𝒪G)2

[Shadmi, Dixon ’93]



• Energy considerations:

2 Re(A*SMA6)
Λ2

∼
E2

Λ2 (or v2

Λ2 )

A6
2

Λ4
∼

E4

Λ4
(or v4

Λ4
,

v2 E2

Λ4 )

by dimensional analysis: 
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• Energy considerations:

2 Re(A*SMA6)
Λ2

∼
E2

Λ2 (or v2

Λ2 )

A6
2

Λ4
∼

E4

Λ4
(or v4

Λ4
,

v2 E2

Λ4 ) faster growth!

For high energy measurement (LHC, tails of kinematic 
distributions),   increasingly important 1/Λ4

by dimensional analysis: 
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|A |2 = |ASM |2 +
2Re(ASM A6)

Λ2
+

|A6 |2

Λ4
+ ⋯

OK, lets just include new physics squared piece

easy, known, but not the whole story
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8

Extending to dim-8 introduces 993 more operators, even assuming 
fermion flavor universality!

Theoretically: need to know how 993 new effects enter?!

Experimentally: means 993 more measurements needed ?!
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Figure 1. Growth of the number of independent operators in the SM EFT up to mass dimension
15. Points joined by the lower solid line are for one fermion generation; those joined by the upper
solid line are for three generations. Dashed lines are to guide the eye to the growth of the even and
odd mass dimension operators in both cases.

(which exhibit some rather large prime numbers!). The number of independent operators
evaluated for Nf = 1 and Nf = 3 up to dimension 15 are plotted in Fig. 1. We see the
growth is exponential, which is to be expected on general grounds [43].

5 Discussion

The method we have outlined in this paper can be extended trivially to determining the
content and number of higher dimension operators for any four-dimensional relativistic
gauge theory with scalar and fermionic matter. The master equation is eq. (3.14), which
needs to be modified from the SM to the theory of interest. The pieces of eq. (3.14)
which are SM specific are the gauge groups (and as such the Haar measures that need to be
integrated over to produce gauge singlets), and the field content (which enters the plethystic
exponential).

In the present work we studied the expansion of eq. (2.7) in powers of mass dimension,
✏. However, in our previous work in (0+1) dimensions [11] we were able to obtain all-order
formulae for Hilbert series, revealing a fascinating analytic structure which could not be
seen in any finite order expansion. Can we hope to attack eq. (2.7) directly? Could this
reveal some previously hidden all-order structure of the SM EFT? While lofty, questions
along these lines merit detailed investigation of the structure underlying operator bases,
which we take up in [1].

– 16 –

[Henning et al 
1512.03433]

9

# operators at given mass dimension known (Hilbert series method), 
but explodes with mass dim!

Going even further…



Q: Does it make a difference? Meaning, e.g. does 
     (dim-6)2 suffice to capture   effects? 1/Λ4

So:

Q: Is it phenomenologically viable to go beyond 
dimension-6?

10



What do these operators actually do?

11

O8,H (H†H)4 O8,W ✏IJK (H†H)Wµ⌫,IW J
⌫⇢W

⇢,K
µ

O8,HB (H†H)2Bµ⌫Bµ⌫
O8,W̃ ✏IJK (H†H)Wµ⌫,IfW J

⌫⇢W
⇢,K
µ

O8,HB̃
(H†H)2Bµ⌫

eBµ⌫
O8,HG �AB (H†H)2GA

µ⌫G
µ⌫,B

O8,HWB �IJ (H†H)(H†⌧ IH)Bµ⌫Wµ⌫,J
O8,HG̃

�AB (H†H)2GA
µ⌫

eGµ⌫,B

O8,HW̃B
�IJ (H†H)(H†⌧ IH)Bµ⌫

fWµ⌫,J
O8,G fABC (H†H)Gµ⌫,AGB

⌫⇢G
⇢,C
µ

O8,HW �IJ(H†H)2W I
µ⌫W

µ⌫,J
O8,G̃ fABC (H†H)Gµ⌫,A eGB

⌫⇢G
⇢,C
µ

O8,HW̃
�IJ(H†H)2W I

µ⌫
fWµ⌫,J

O8,HW2 �IK�JM (H†⌧ IH)(H†⌧JH)WK
µ⌫W

µ⌫,M

O8,HW̃2 �IK�JM (H†⌧ IH)(H†⌧JH)WK
µ⌫
fWµ⌫,M

O8,HWB2 ✏IJK (H†⌧ IH)B⌫
µW

J
⌫⇢W

µ⇢,K

O8,HWB̃2 ✏IJK (H†⌧ IH)
⇣
eBµ⌫W J

⌫⇢W
⇢,K
µ +Bµ⌫W J

⌫⇢
fW ⇢,K

µ

⌘

Table 4. The 17 derivative-free operators after conversion to the standard X, eX notation for the
field-strength tensors and with H† in the 2̄ representation.

O8,HD (H†H)2(DµH
† DµH) O8,DHW̃3b ✏IJK (DµH†⌧ ID⌫H)(W J

µ⇢
fW ⇢,K

⌫ + fW J

µ⇢W
⇢,K

⌫ )

O8,HD2 �IJ (H†H)(H†⌧ IH)(DµH†⌧JDµH) O8,DHWB �IJ (DµH† ⌧ IDµH)B⇢�W J

⇢�

O8,DHB (DµH† D⌫H)Bµ⇢B
⇢

⌫ O8,DHW̃B
�IJ (DµH† ⌧ IDµH)B⇢�fW J

⇢�

O8,DHB2 (DµH†DµH)B⇢�B⇢� O8,DHWB2 i �IJ (DµH†⌧ ID⌫H)(Bµ⇢W
⇢,J

⌫ �B⌫⇢W
⇢,J

µ )

O8,DHB̃2 (DµH†DµH)B⇢� eB⇢� O8,DHWB3 �IJ (DµH†⌧ ID⌫H)(Bµ⇢W
⇢,J

⌫ +B⌫⇢W
⇢,J

µ )

O8,DHG �AB (DµH†D⌫H)GA

µ⇢G
⇢,B

⌫ O8,DHW̃B2 �IJ (DµH†⌧ ID⌫H)(B⇢

[µ
fW J

⌫]⇢ � eB⇢

[µW
J

⌫]⇢)

O8,DHG2 �AB (DµH†DµH)G⇢�,AGB

⇢� O8,DHW̃B3 �IJ (DµH†⌧ ID⌫H)(B⇢

{µ
fW J

⌫}⇢ + eB⇢

{µW
J

⌫}⇢)

O8,DHG̃2 �AB (DµH†DµH)G⇢�,A eGB

⇢� O8,HDHB i (H†H)(DµH
† D⌫H)Bµ⌫

O8,DHW �IJ (DµH†D⌫H)W I

µ⇢W
⇢,J

⌫ O8,HDHB̃
i (H†H)(DµH

† D⌫H) eBµ⌫

O8,DHW2 �IJ (DµH†DµH)W ⇢�,IW J

⇢� O8,HDHW i �IJ (H†H)(DµH†⌧ ID⌫H)W J

µ⌫

O8,DHW̃2 �IJ (DµH†DµH)W ⇢�,IfW J

⇢� O8,HDHW̃
i �IJ (H†H)(DµH†⌧ ID⌫H)fW J

µ⌫

O8,DHW3 ✏IJK (DµH†⌧ ID⌫H)W J

µ⇢W
⇢,K

⌫ O8,HDHW2 i ✏IJK (H†⌧ IH)(DµH†⌧JD⌫H)WK

µ⌫

O8,DHW̃3a ✏IJK (DµH†⌧ ID⌫H)(W J

µ⇢
fW ⇢,K

⌫ � fW J

µ⇢W
⇢,K

⌫ ) O8,HDHW̃2 i ✏IJK (H†⌧ IH)(DµH†⌧JD⌫H)fWK

µ⌫

Table 5. The 26 two-derivative operators after conversion to the standard X, eX notation (plus
linear combinations). Factors of i are included where necessary so that the operators are explicitly
self-hermitian with real coe�cients.

Table 4. When possible, we have opted to put the derivatives on the Higgs fields as this

makes implementing the operators into FeynRules easier.

• Table 6 contains the three bosonic operators at O(D4). When forming these operators

– 16 –

a subset of the bosonic operators at dim-8….



What do these operators actually do?

Change field strength 
normalization/inputs

Modify existing vertices

New multi-particle

interactions 

(H†H) □ (H†H)ex.)

ex.) (H†H) Wa
μνWa,μν

ex.) (ψ̄ ψ)2

12



Punchline of this talk

Its possible to reorganize SMEFT operators (= find a basis), where 
2 and 3-particle interactions are sensitive to the  

minimal number of operators
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Punchline of this talk

Its possible to reorganize SMEFT operators (= find a basis), where 
2 and 3-particle interactions are sensitive to the  

minimal number of operators

With fewer operators around, can actually do complete  
calculations for certain processes.  

 
Use those processes as simple laboratories for ‘truncation error 

studies’

1/Λ4



Q: Does it make a difference? 

Or, to answer questions posed:

Q: Is it phenomenologically viable to go beyond 
dimension-6?

For resonant (h/W/Z/t) phenomenology involving 2- and 3-
point vertices, yes

Absolutely, especially when applied to loop-level SM processes

14



First hint: Misiak et al 1812.11513 

Fully exploiting IBP and EOM redundancies, the only SMEFT operator 
types that contribute to bosonic 2-pt interactions are:

Hn , HnX2 , D2Hn
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First hint: Misiak et al 1812.11513 

Fully exploiting IBP and EOM redundancies, the only SMEFT operator 
types that contribute to bosonic 2-pt interactions are:

Hn , HnX2 , D2Hn

15

•  ? — too many fields   (DH†)(DH)(DH†)(DH)

•   ? — via IBP and EOM, reduces to operators 
with 2 derivs + operators with > 2 fields
(D{μν}H†D{μν}H)(H†H)

Similar arguments can be made for operators with field 
strengths, more derivatives

Why not e.g.  ?  D4H4

…



Bosonic kinetic piece 
defined by two functions:  

h(H)(DμH†DμH) , gAB(H)𝒲A
μν𝒲Bμν

𝒲A = (W1, W2, W3, B)

Fully exploiting IBP and EOM redundancies, the only SMEFT operator 
types that contribute to bosonic 2-pt interactions are:

Hn , HnX2 , D2Hn

First hint: Misiak et al 1812.11513 

16

this choice defines a basis



Even better:
Number of   type operators ~ doesn’t change 

with mass dimension
Hn , Hn X2 , D2Hn

Mass Dimension

Field space connection 6 8 10 12 14

hIJ(φ)(Dµφ)I(Dµφ)J 2 2 2 2 2

gAB(φ)WA
µνWB,µν 3 4 4 4 4

kIJA(φ)(Dµφ)I(Dνφ)JWA
µν 0 3 4 4 4

fABC(φ)WA
µνWB,νρWC,µ

ρ 1 2 2 2 2

Y u
pr(φ)Q̄u+ h.c. 2N2

f 2N2
f 2N2

f 2N2
f 2N2

f

Y d
pr(φ)Q̄d+ h.c. 2N2

f 2N2
f 2N2

f 2N2
f 2N2

f

Y e
pr(φ)L̄e+ h.c. 2N2

f 2N2
f 2N2

f 2N2
f 2N2

f

de,prA (φ)L̄σµνeWµν
A + h.c. 4N2

f 6N2
f 6N2

f 6N2
f 6N2

f

du,prA (φ)Q̄σµνuWµν
A + h.c. 4N2

f 6N2
f 6N2

f 6N2
f 6N2

f

dd,prA (φ)Q̄σµνdWµν
A + h.c. 4N2

f 6N2
f 6N2

f 6N2
f 6N2

f

LψR

pr,A(φ)(D
µφ)J (ψ̄p,RγµσAψr,R) N2

f N2
f N2

f N2
f N2

f

LψL

pr,A(φ)(D
µφ)J(ψ̄p,LγµσAψr,L) 2N2

f 4N2
f 4N2

f 4N2
f 4N2

f

Table 1. Counting of operators contributing to two- and three-point functions from Hilbert series.
These results are consistent with Ref. [4].

The minimum is redefined order by order in the power counting expansion

〈H†H〉 =
v2

2

(

1 +
3C(6)

H v2

4λ
+ v4

9 (C(6)
H )2 + 4C(8)

H λ

8λ2
+ · · ·

)

≡
v̄2T
2
. (3.2)

This generalization of the expectation value simplifies at leading order in 1/Λ2 to the vev

of the SM. Including the leading 1/Λ2 correction, the result is that of Ref. [26], the 1/Λ4

correction is as given in Ref. [18], etc. At higher orders in the polynomial expansion of H†H

that results from taking the derivative of the potential, numerical methods must be used to

find a minimum due to the Abel–Ruffini theorem. Note that this also means that expanding

out the vev dependence in a formal all-orders result to a fixed order necessarily requires

numerical methods.

The expectation values of the field space connections is also denoted by 〈〉 and a critical

role is played by
√
h
IJ

= 〈hIJ 〉1/2, and √gAB = 〈gAB〉1/2. The
√
h and

√
g depend on v̄T .

3.1 Scalar bilinear metric: hIJ(φ)

The relevant terms in L(6,8) for the scalar metric are [18]

L(6,8) ⊇ C(6)
H!(H

†H)!(H†H) + C(6)
HD(H

†DµH)$(H†DµH) (3.3)

+ C(8)
HD(H

†H)2(DµH)†(DµH) + C(8)
H,D2(H

†H)(H†σaH)(DµH)† σa (DµH).
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HD = (H†H)n+2 (DμH)

†
(DμH)

Q(8+2n)
H,D2 = (H†H)n+1 (H†σaH) (DμH)

†
σa (DμH)

contributions to hIJ



(H†H)n W2
L jhopsf!Mpsfou{-!gpdvt!po!TV)3*X!sfqt/

H = (1/2) ∴ Hn = (n /2)
H† = (1/2) ∴ (H†)n = (n /2)

fogpsdfe!cz!Cptf!tznn/!W2
L = (0 ⊕ 2)

>!!3!jowbsjbout

\,2!gps! !boe!,2!gps! !>!5^B2
L WL BL

Example operator counting:
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L = (0 ⊕ 2)⊗
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which leads to the result

hIJ =

[

1 + φ2C(6)
H! +

∞
∑

n=0

(

φ2

2

)n+2
(

C(8+2n)
HD − C(8+2n)

H,D2

)

]

δIJ

+
ΓI
A,JφKΓK

A,Lφ
L

2

(

C(6)
HD

2
+

∞
∑

n=0

(

φ2

2

)n+1

C(8+2n)
H,D2

)

. (3.10)

3.2 Gauge bilinear metric: gAB(φ)

The relevant L(6+2n) terms for the Gauge Higgs interactions are

Q(6+2n)
HB = (H†H)n+1Bµν Bµν , (3.11)

Q(6+2n)
HW = (H†H)n+1W µν

a W a
µν , (3.12)

Q(6+2n)
HWB = (H†H)n(H†σaH)W µν

a Bµν , (3.13)

Q(8+2n)
HW,2 = (H†H)n(H†σaH)(H†σbH)W µν

a Wb,µν , (3.14)

Q(6+2n)
HG = (H†H)n+1Gµν

A
GA

µν . (3.15)

The Gauge-Higgs field space metric is given by

gAB(φI) =

[

1− 4
∞
∑

n=0

(

C(6+2n)
HW (1− δA4) + C(6+2n)

HB δA4

)

(

φ2

2

)n+1
]

δAB

+
∞
∑

n=0

C(8+2n)
HW,2

(

φ2

2

)n
(

φIΓ
I
A,Jφ

J
) (

φLΓ
L
B,Kφ

K
)

(1− δA4)(1 − δB4)

+

[ ∞
∑

n=0

C(6+2n)
HWB

(

φ2

2

)n
]

(φIΓ
I
A,Jφ

J) (1− δA4)δB4, (3.16)

and for the gluon fields GA,µ =
√
k

AB Gµ
B
, where

kAB(φ) =

(

1− 4
∞
∑

n=0

C(6+2n)
HG

(

φ2

2

)n
)

δAB . (3.17)

3.3 Yukawa couplings: Y (φ)

The Yukawa interactions of the Higgs field are extended in interpretation in a straightforward

manner. Here the relevant L(6+2n) operators are

Q(6+2n)
eH
pr

= (H†H)n+1($̄p er H), (3.18)

Q(6+2n)
uH
pr

= (H†H)n+1(q̄p ur H̃), (3.19)

Q(6+2n)
dH
pr

= (H†H)n+1(q̄p dr H). (3.20)
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Convenient to work with real fields:

the dependence on the scalar field coordinates from the remaining parts of a composite op-

erator, the expectation value of Gi(I,A · · · ) reduces to a number, and emissions of h. This

collapses a tower of higher-order interactions into a numerical coefficient for a composite oper-

ator – when considering matrix elements without propagating h fields. The fi are built out of

the combinations of fields and derivatives that are outputs of the Hilbert series characterizing

and defining a set of higher-dimensional operators, see Refs. [4, 18, 23–25]. This introduces a

basis dependence into the results. The Hilbert series generates operator bases with minimal

sets of explicit derivatives, consistent with reductions of operators in an operator basis by

the Equation of Motion (EOM). For example, the Warsaw basis for L(6) is consistent with

the output of a Hilbert series expansion.4 The fi retain a minimal scalar field coordinate

dependence, and vev dependence, through powers of (DµH) and at higher orders through

symmetric derivatives acting on H. As these operator forms depend on powers of ∂µh they

do not collapse to just a number when a scalar expectation value is taken.

2.1 Mass eigenstates

The field coordinates of the Higgs doublet are put into a convenient form with a common set of

generators for SU(2)L×U(1)Y, by using the real scalar field coordinates φI = {φ1,φ2,φ3,φ4}
introduced with normalization

H(φI) =
1√
2

[

φ2 + iφ1
φ4 − iφ3

]

, H̃(φI) =
1√
2

[

φ4 + iφ3
−φ2 + iφ1

]

. (2.3)

φ4 is expanded around the vacuum expectation value with the replacement φ4 → φ4 + v̄T .

The gauge boson field coordinates are similarly unified into WA = {W 1,W 2,W 3, B} with

A = {1, 2, 3, 4}. The corresponding general coupling is defined as αA = {g2, g2, g2, g1}.
We define short-hand notation as in Ref. [11] for the transformation matrices that lead

to the canonically normalized mass eigenstate fields

UA
C =

√
gABUBC , VI

K =
√
h
IJ
VJK .

Here
√
gAB and

√
h
IJ

are square-root metrics, which are understood to be matrix square

roots of the expectation value – 〈〉 – of the field space connections for the bilinear terms

in the SMEFT. These connections are defined below in Section 2.3. The matrices U, V are

unitary, and given by

UBC =











1√
2

1√
2

0 0
i√
2

−i√
2

0 0

0 0 cθ sθ
0 0 −sθ cθ











, VJK =











−i√
2

i√
2

0 0
1√
2

1√
2

0 0

0 0 −1 0

0 0 0 1











.

4Such a basis also offers a number of other benefits when calculating in the SMEFT, that are most apparent

beyond leading order in the operator expansion; see the review [9] for more details.
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hIJ = 1 + ϕ2C(6)
H□ +

∞

∑
n=0 ( ϕ2

2 )
n+2

(C(8+2n)
HD − C(8+2n)

H,D2 ) δIJ +
ΓI

A,JϕKΓK
A,LϕL

2
C(6)

HD

2
+

∞

∑
n=0 ( ϕ2

2 )
n+1

C(8+2n)
H,D2

hIJ(ϕ)(Dμϕ)
I

(Dμϕ)
J

Can rewrite scalar quadratic form as a metric in field space

SM, . Including higher dimension operators, field space 
metrics become curved  ‘geometric’ SMEFT or  `geoSMEFT’

gAB, hIJ = 1
⟶

[ Burgess, Lee, Trott ’10, Alonso, Jenkins, Manohar ’15, ’16, Helset, Paraskevas, Trott 1803.08001]
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What about 3-pt interactions? Similar story

• 3 fields only, Lorentz invariance

• non-Higgs derivatives increase field count or introduce momentum

Dψ, Dψ̄, DX → 2 fields or 1 field + 1 momentum
DH → 1 or 2 fields or 1 field + 1 momentum
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But all momentum dot products reduce to masses once we 
impose momentum conservation
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pH + pψ̄ + pψ = 0∼ (
m2

ψ − m2
H − m2
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2 ) H ψ̄ ψ

Just changes coefficient of  : not a new operator structureH ψ̄ ψ
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What about 3-pt interactions? Similar story

Net result: limited options

DF1 DF2 DF3 DF4

(DX)2 H2

H2 X3

(Dψ̄) ψ (DH) H

ψ̄ψ (DH) H3

…

exactly the ‘special 3-body kinematics’ story from on-shell amplitude-land

21



Allowed 3-pt structures:

As before, # operators small and remains ~fixed for increasing mass dimension
Mass Dimension

Field space connection 6 8 10 12 14

hIJ(φ)(Dµφ)I(Dµφ)J 2 2 2 2 2

gAB(φ)WA
µνWB,µν 3 4 4 4 4

kIJA(φ)(Dµφ)I(Dνφ)JWA
µν 0 3 4 4 4

fABC(φ)WA
µνWB,νρWC,µ

ρ 1 2 2 2 2

Y u
pr(φ)Q̄u+ h.c. 2N2

f 2N2
f 2N2

f 2N2
f 2N2

f

Y d
pr(φ)Q̄d+ h.c. 2N2

f 2N2
f 2N2

f 2N2
f 2N2

f

Y e
pr(φ)L̄e+ h.c. 2N2

f 2N2
f 2N2

f 2N2
f 2N2

f

de,prA (φ)L̄σµνeWµν
A + h.c. 4N2

f 6N2
f 6N2

f 6N2
f 6N2

f

du,prA (φ)Q̄σµνuWµν
A + h.c. 4N2

f 6N2
f 6N2

f 6N2
f 6N2

f

dd,prA (φ)Q̄σµνdWµν
A + h.c. 4N2

f 6N2
f 6N2

f 6N2
f 6N2

f

LψR

pr,A(φ)(D
µφ)J (ψ̄p,RγµσAψr,R) N2

f N2
f N2

f N2
f N2

f

LψL

pr,A(φ)(D
µφ)J(ψ̄p,LγµσAψr,L) 2N2

f 4N2
f 4N2

f 4N2
f 4N2

f

Table 1. Counting of operators contributing to two- and three-point functions from Hilbert series.
These results are consistent with Ref. [4].

The minimum is redefined order by order in the power counting expansion

〈H†H〉 =
v2

2

(

1 +
3C(6)

H v2

4λ
+ v4

9 (C(6)
H )2 + 4C(8)

H λ

8λ2
+ · · ·

)

≡
v̄2T
2
. (3.2)

This generalization of the expectation value simplifies at leading order in 1/Λ2 to the vev

of the SM. Including the leading 1/Λ2 correction, the result is that of Ref. [26], the 1/Λ4

correction is as given in Ref. [18], etc. At higher orders in the polynomial expansion of H†H

that results from taking the derivative of the potential, numerical methods must be used to

find a minimum due to the Abel–Ruffini theorem. Note that this also means that expanding

out the vev dependence in a formal all-orders result to a fixed order necessarily requires

numerical methods.

The expectation values of the field space connections is also denoted by 〈〉 and a critical

role is played by
√
h
IJ

= 〈hIJ 〉1/2, and √gAB = 〈gAB〉1/2. The
√
h and

√
g depend on v̄T .

3.1 Scalar bilinear metric: hIJ(φ)

The relevant terms in L(6,8) for the scalar metric are [18]

L(6,8) ⊇ C(6)
H!(H

†H)!(H†H) + C(6)
HD(H

†DµH)$(H†DµH) (3.3)

+ C(8)
HD(H

†H)2(DµH)†(DµH) + C(8)
H,D2(H

†H)(H†σaH)(DµH)† σa (DµH).
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find a minimum due to the Abel–Ruffini theorem. Note that this also means that expanding

out the vev dependence in a formal all-orders result to a fixed order necessarily requires

numerical methods.

The expectation values of the field space connections is also denoted by 〈〉 and a critical

role is played by
√
h
IJ

= 〈hIJ 〉1/2, and √gAB = 〈gAB〉1/2. The
√
h and

√
g depend on v̄T .

3.1 Scalar bilinear metric: hIJ(φ)

The relevant terms in L(6,8) for the scalar metric are [18]

L(6,8) ⊇ C(6)
H!(H

†H)!(H†H) + C(6)
HD(H

†DµH)$(H†DµH) (3.3)
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H,D2(H
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Similarly, D2ψ can be reduced as

D2ψ = DµDνg
µνψ = DµDν(γ

µγν + iσµν)ψ ⇒ EOM and higher-points, (2.8)

where σµν = i
2(γµγν − γνγµ). In what follows, when D2F appears, it is replaced in terms of

EOM terms and higher-point functions for these reasons. Explicitly reducing operator forms

by the EOM, when possible, in favour of other composite operators, has a key role in these

arguments.

Now consider higher-derivative contributions to three-point functions. Explicit appear-

ances of D2F are removed due to the proceeding argument. Further, a general combination

of derivatives, acting on three general SM fields F1,2,3,

f(H)(DµF1)(DνF2)D{µν}F3, (2.9)

is removable in terms of EOM terms and higher-point functions, using integration by parts:

f(H)(DµF1)(DνF2)D{µν}F3 (2.10)

=− f(H)
[

(D2F1)(DνF2) + (DµF1)(DµDνF2) + (DµDνF1)(DµF2) + (DνF1)(D
2F2)

]

(DνF3)

− (Dµf(H)) [(DµF1)(DνF2) + (DνF1)(DµF2)] (DνF3)

⇒− f(H) [(DµF1)(DµDνF2) + (DµDνF1)(DµF2)] (DνF3) + EOM and higher-points

⇒− f(H)(D[µ,ν]F1)(DµF2)(DνF3) + f(H)(DµF1)(DµF2)(D
2F3) + EOM and higher-points

⇒ EOM and higher-points.

As a result, in general, an operator with four or more derivatives acting on three (possibly

different) fields Fi can be reduced out of three-point amplitudes.

When considering field space connections that can reduce to three-point functions when

a vacuum expectation value is taken, we also use

f(φ)F1 (DµF2) (DµF3)⇒ (Dµf(φ)) (DµF1)F2 F3 +
1

2
(D2f(φ))F1 F2 F3 + EOM ,(2.11)

to conventionally move derivative terms onto scalar fields. After reducing the possible field

space connections using these arguments systematically, and integrating by parts, a minimal

generalization of field space connections for CP even electroweak bosonic two- and three-point

amplitudes is composed of

hIJ (φ)(Dµφ)
I(Dµφ)

J , gAB(φ)WA
µνWB,µν , kAIJ(φ)(Dµφ)

I(Dνφ)
J Wµν

A ,

fABC(φ)WA
µνWB,νρWC,µ

ρ ,

and the scalar potential V (φ).

The minimal set of field space connections involving fermionic field in two- and three-point

functions is

Y (φ)ψ̄1ψ2, LI,A(φ)ψ̄1γ
µτAψ2(Dµφ)

I , dA(φ)ψ̄1σ
µνψ2WA

µν ,
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Example:

We define the Yukawa connection in Eqn. (2.19), where

Y e
pr(φI) = −H(φI)[Ye]

†
pr +H(φI)

∞
∑

n=0

C(6+2n)
eH
pr

(

φ2

2

)n

, (3.21)

Y d
pr(φI) = −H(φI)[Yd]

†
pr +H(φI)

∞
∑

n=0

C(6+2n)
dH
pr

(

φ2

2

)n

, (3.22)

Y u
pr(φI) = −H̃(φI)[Yu]

†
pr + H̃(φI)

∞
∑

n=0

C(6+2n)
uH
pr

(

φ2

2

)n

. (3.23)

3.4 (Dµφ)I ψ̄ Γµψ

The class seven operators in the Warsaw basis, and extended to higher mass dimensions, are

of the form

Q1,(6+2n)
Hψ
pr

= (H†H)nH†←→iDµHψ̄pγµψr,

Q3,(6+2n)
Hψ
pr

= (H†H)nH†←→iDµ
aHψ̄pγµσaψr,

Q2,(8+2n)
Hψ
pr

= (H†H)n(H†σaH)H†←→iDµHψ̄pγµσaψr,

Qε,(8+2n)
Hψ
pr

= εabc (H
†H)n (H†σcH)H†←→iDµ

bHψ̄pγµσaψr. (3.24)

where
←→
D µ

a = (σaDµ −
←−
Dµ σa). Connections corresponding to these operators are defined as

Lψ,prJ,A = −(φγ4)JδA4

∞
∑

n=0

C1,(6+2n)
Hψ
pr

(

φ2

2

)n

− (φγA)J(1− δA4)
∞
∑

n=0

C3,(6+2n)
HψL
pr

(

φ2

2

)n

(3.25)

+
1

2
(φγ4)J (1− δA4)

(

φKΓK
A,Lφ

L
)

∞
∑

n=0

C2,(8+2n)
HψL
pr

(

φ2

2

)n

+
εABC

2
(φγB)J

(

φKΓK
C,Lφ

L
)

∞
∑

n=0

Cε,(8+2n)
HψL
pr

(

φ2

2

)n

.

Similarly one can define the right-handed charged current connection

Lud,pr
J =

δ2L
δ(Dµφ)Jδ(ūpγµdr)

=
φ̃I
2
(−ΓI

4,J + iγI4,J )
∞
∑

n=0

C(6+2n)
Hud
pr

(

φ2

2

)n

, (3.26)

where Q(6+2n)
Hud
pr

= (H†H)n(H̃iDµH)ūpγµdr.
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contributing 
operators

compact form for connection:

ijhifs!ejn/!wfstjpot!
pg!ｃdmbtt!8ｄ!
pqfsbupst

ofx!fggfdut!
gspn!d ≥ 8
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Key part of 2- and 3-pt result is that special kinematics forbade
D ∼ momentum

No longer true at -pt interactions. Operators can depend on≥ 4
𝒪 ∼ sn tm

 infinite set of higher derivative operators can contribute⟶

24

4-pt interactions: can we go ‘full metric’?



geoSMEFT at work:

SMEFT phenomenology for processes involving 2, 3-pt interactions now 
doable to any order in v2/Λ2

 Specifically,  easily calculated for a large set of processes  𝒪(1/Λ4)

25



geoSMEFT at work:

SMEFT phenomenology for processes involving 2, 3-pt interactions now 
doable to any order in v2/Λ2

 Specifically,  easily calculated for a large set of processes  𝒪(1/Λ4)

25

includes

and

sftpobou

suppressed by 

 
ΓZmZ

v2



SMEFT phenomenology for processes involving 2, 3-pt interactions now 
doable to any order in v2/Λ2

 Specifically,  easily calculated for a large set of processes  𝒪(1/Λ4)

includes

and
suppressed by 

 
ΓZmZ

v2

26

also

geoSMEFT at work:

sftpobou

[2007.00565 Hays,  
      Helset, AM, Trott]

[2102.02819

 Corbett, Helset, AM, Trott]



What can we do with this? `EW inputs’

Bosonic kinetic terms used to define the gauge boson mass basis

& couplings to mass eigenstates define:  e, gZ, sin2 θZ

The geometric definition of the canonically normalized mass eigenstate gauge couplings

are

ḡ2 = g2
√
g11 = g2

√
g22, (4.6)

ḡZ =
g2
c2θZ

(

cθ̄
√
g33 − sθ̄

√
g34
)

=
g1
s2θZ

(

sθ̄
√
g44 − cθ̄

√
g34
)

, (4.7)

ē = g2
(

sθ̄
√
g33 + cθ̄

√
g34
)

= g1
(

cθ̄
√
g44 + sθ̄

√
g34
)

, (4.8)

with corresponding mass eigenstate generators listed in the Appendix. Here we have used the

fact that as
√
g11 =

√
g22 due to SU(2)L gauge invariance, it also follows that

√
g12 = 0. These

definitions are geometric and follow directly from the consistency of the SMEFT description

with mass eigenstate fields. These redefinitions hold at all orders in the SMEFT power

counting expansion. Similarly, consistency also dictates the field space geometric definitions

of the mixing angles

s2θZ =
g1(
√
g44sθ̄ −

√
g34cθ̄)

g2(
√
g33cθ̄ −

√
g34sθ̄) + g1(

√
g44sθ̄ −

√
g34cθ̄)

, (4.9)

s2θ̄ =
(g1
√
g44 − g2

√
g34)2

g21 [(
√
g34)2 + (

√
g44)2] + g22 [(

√
g33)2 + (

√
g34)2]− 2g1g2

√
g34(
√
g33 +

√
g44)

. (4.10)

The gauge boson masses are also defined in a geometric manner as

m̄2
W =

ḡ22
4

√

h11
2
v̄2T , m̄2

Z =
ḡ2Z
4

√

h33
2
v̄2T m̄2

A = 0. (4.11)

To utilize these definitions, and map to a particular operator basis, one must expand out to a

fixed order in v̄2T /Λ
2. Nevertheless, such all-order definitions are of value. The relations hold

in any operator basis to define the Lagrangian parameters incorporating SMEFT corrections

in v̄2T /Λ
2 and clarify the role of these Lagrangian terms in the SMEFT expansion.

When the covariant derivative acts on fermion fields, the Pauli matrices σ1,2,3 for the

SU(2)L generators10, and the 2× 2 identity matrix I for the U(1)Y generator are used. This

is a more convenient generator set for chiral spinors. The covariant derivative acting on the

fermion fields ψ, expressed in terms of these quantities, is

Dµψ =

[

∂µ + iḡ3 Gµ
A
T A + i

ḡ2√
2

(

W+ T+ +W− T−)+ iḡZ
(

T3 − s2θZQψ

)

Zµ + iQψ ēAµ

]

ψ.

(4.12)

Here Qψ = σ3/2 + Yψ and the positive sign convention on the covariant derivative is present

and the convention
√
2W± = W1 ∓ iW2 and

√
2Φ± = φ2 ∓ iφ1 is used. Here T3 = σ3/2 and

2T± = σ1 ± iσ2 and Yψ = {1/6, 2/3,−1/3,−1/2,−1} for ψ = {qL, uR, dR, %L, eR}. Note that

the SU(2)L×U(1)Y generators of the fermion fields do not need to be the same as those for the

10Defined in the Appendix.
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W3
μ, Bμ ⟶ Aμ, Zμ

SM:   = 
functions of  alone 

e, gZ, sin2 θZ
g, g′ 

SMEFT: relation altered by operators 
that feed into kinetic terms: 

ex.)   

 = function of  
coefficients

C(6)
HW H†H WA

μνWA,μν

∴ e, gZ, sin2 θZ g, g′ , C(n)
i

‘Universal effect’, since all occurrences of  now carry 
coefficient dependence 

e, gZ, sin2 θZ

27
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ḡ2√
2

(

W+ T+ +W− T−)+ iḡZ
(

T3 − s2θZQψ

)

Zµ + iQψ ēAµ
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ḡ2 = g2
√
g11 = g2

√
g22, (4.6)
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with mass eigenstate fields. These redefinitions hold at all orders in the SMEFT power

counting expansion. Similarly, consistency also dictates the field space geometric definitions

of the mixing angles

s2θZ =
g1(
√
g44sθ̄ −

√
g34cθ̄)

g2(
√
g33cθ̄ −

√
g34sθ̄) + g1(

√
g44sθ̄ −

√
g34cθ̄)

, (4.9)

s2θ̄ =
(g1
√
g44 − g2

√
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g21 [(
√
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√
g44)2] + g22 [(

√
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√
g34)2]− 2g1g2

√
g34(
√
g33 +

√
g44)

. (4.10)

The gauge boson masses are also defined in a geometric manner as

m̄2
W =

ḡ22
4

√

h11
2
v̄2T , m̄2

Z =
ḡ2Z
4

√

h33
2
v̄2T m̄2

A = 0. (4.11)

To utilize these definitions, and map to a particular operator basis, one must expand out to a

fixed order in v̄2T /Λ
2. Nevertheless, such all-order definitions are of value. The relations hold

in any operator basis to define the Lagrangian parameters incorporating SMEFT corrections

in v̄2T /Λ
2 and clarify the role of these Lagrangian terms in the SMEFT expansion.

When the covariant derivative acts on fermion fields, the Pauli matrices σ1,2,3 for the

SU(2)L generators10, and the 2× 2 identity matrix I for the U(1)Y generator are used. This

is a more convenient generator set for chiral spinors. The covariant derivative acting on the

fermion fields ψ, expressed in terms of these quantities, is

Dµψ =
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∂µ + iḡ3 Gµ
A
T A + i

ḡ2√
2

(

W+ T+ +W− T−)+ iḡZ
(

T3 − s2θZQψ
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Zµ + iQψ ēAµ

]

ψ.

(4.12)

Here Qψ = σ3/2 + Yψ and the positive sign convention on the covariant derivative is present

and the convention
√
2W± = W1 ∓ iW2 and

√
2Φ± = φ2 ∓ iφ1 is used. Here T3 = σ3/2 and

2T± = σ1 ± iσ2 and Yψ = {1/6, 2/3,−1/3,−1/2,−1} for ψ = {qL, uR, dR, %L, eR}. Note that

the SU(2)L×U(1)Y generators of the fermion fields do not need to be the same as those for the

10Defined in the Appendix.
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ḡZ =
g2
c2θZ

(

cθ̄
√
g33 − sθ̄

√
g34
)

=
g1
s2θZ

(

sθ̄
√
g44 − cθ̄

√
g34
)

, (4.7)
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What can we do with this? `EW inputs’

e, gZ, sin2 θZ   functions of  ⟶ g, g′ , hIJ, gAB



Can get ‘all orders’ expressions for  processes: 1 → 2

e.g)   h → γγ

The dipole couplings are defined as

〈Z|ūpLu
r
R〉 = −2ḡZ ū

p
L/pZ/εZu

p
R

(

〈du,pr3 〉
c2θZ
g2
− 〈du,pr4 〉

s2θZ
g1

)

,

〈Z|d̄pLd
p
R〉 = −2ḡZ d̄

p
L/pZ/εZd

p
R

(

〈dd,pr3 〉
c2θZ
g2
− 〈dd,pr4 〉

s2θZ
g1

)

,

〈Z|ēpLe
p
R〉 = −2ḡZ ē

p
L/pZ/εZe

p
R

(

〈de,pr3 〉
c2θZ
g2
− 〈de,pr4 〉

s2θZ
g1

)

, (4.19)

and

〈W+|q̄p dr〉 = −
√
2
ḡ2
g2

(

〈dd,pr1 〉 + i〈dd,pr2 〉
)

ūpL/pW/εW drR,

〈W−|q̄p ur〉 = −
√
2
ḡ2
g2

(〈du,pr1 〉 − i〈du,pr2 〉 ) d̄pL/pW /εW urR,

〈W+|"̄p er〉 = −
√
2
ḡ2
g2

(〈de,pr1 〉 + i〈de,pr2 〉 ) ν̄pL/pW /εW erR. (4.20)

Here the fermions in the dipole connections are in the weak eigenstate basis and a Hermitian

conjugate connection also exists in each case. The expectation values of dA are understood

to be the upper (lower) component of an SU(2) doublet for de1,2, d
d
1,2, and du3,4 (du1,2, d

e
3,4, and

dd3,4).

4.6 hAA, hAZ couplings

The effective coupling of h-γ-γ, including the tower of v̄2T /Λ
2 corrections, is given by

〈h|A(p1)A(p2)〉 = −〈hAµνAµν〉
√
h
44

4

[

〈
δg33(φ)

δφ4
〉
e2

g22
+ 2〈

δg34(φ)

δφ4
〉
e2

g1g2
+ 〈

δg44(φ)

δφ4
〉
e2

g21

]

,

(4.21)

where Aµν = ∂µAν − ∂νAµ, and 〈hAµνAµν〉 = −4(p1 ·p2ε1·ε2 − p1·ε2p2·ε1) when ε1(p1), ε2(p2)
are the polarization vectors of the external γ’s. Similarily the coupling to h-γ-Z is given by

〈h|A(p1)Z(p2)〉 (4.22)

= −〈hAµνZµν〉
√
h
44

2
ē ḡZ

[

〈
δg33(φ)

δφ4
〉
c2θZ
g22

+ 〈
δg34(φ)

δφ4
〉
c2θZ − s2θZ

g1g2
− 〈

δg44(φ)

δφ4
〉
s2θZ
g21

]

,

where 〈hAµνZµν〉 = −2(p1 ·p2ε1 ·ε2 − p1 ·ε2p2 ·ε1).

– 19 –

3.1 �(h ! ��) to L
(8)

In the SM, �(h ! ��) is loop suppressed, and the leading order result was developed in

Refs. [17–19]. Defining

A
h��

SM =
i g e

2

16⇡2mw

Z 1

0
dx

Z 1�x

0
dy

 
�4m2

w + 6x ym2
w + x ym

2
h

m2
w � x ym

2
h

+
X

f

NcQ
2
f

m
2
f
(1� 4x y)

m
2
f
� x ym

2
h

!
,

hhA
µ⌫
Aµ⌫i = hh|hA

µ ⌫
Aµ ⌫ |�(pa), �(pb)i = �4

⇣
pa · pb g

↵�
� p

�

a p
↵

b

⌘
✏↵✏� , (3.3)

the three-point function h� � � � in the SMEFT is given by [5]

hh|� �i =� hhA
µ⌫
Aµ⌫i

p
h
44

4


h
�g33(�)

��4
i
e
2

g
2
2

+ 2h
�g34(�)

��4
i
e
2

g1g2
+ h

�g44(�)

��4
i
e
2

g
2
1

�

+ hhA
µ⌫
Aµ⌫iA

h��

SM . (3.4)

Here we have used the geometric electric charge gauge coupling and Weinberg angle [5]

ē = g2

⇣
s
✓̄

p
g
33 + c

✓̄

p
g
34
⌘
= g1

⇣
c
✓̄

p
g
44 + s

✓̄

p
g
34
⌘
, (3.5)

s
2
✓̄
=

(g1
p
g
44

� g2
p
g
34)2

g
2
1[(

p
g
34)2 + (

p
g
44)2] + g

2
2[(

p
g
33)2 + (

p
g
34)2]� 2g1g2

p
g
34(

p
g
33 +

p
g
44)

. (3.6)

These geometric Lagrangian parameters are functions of the field space connections hIJ , gAB,

in particular the matrix square roots of these field space connections
p
g
AB

= hgABi
1/2, and

p
hIJ = hhIJi

1/2.2 As the SMEFT perturbations are small corrections to the SM, the field

space connection is a positive semi-definite matrix, with a unique square root.

The key point of this paper is to make manifest the consequences of the fact that h����

at 1/⇤2 is hhAµ⌫
Aµ⌫ihh|��iL(6) where

hh|��iL(6) =

"
g
2
2 C̃

(6)
HB

+ g
2
1 C̃

(6)
HW

� g1 g2 C̃
(6)
HWB

(gSM
Z

)2

#
, (3.7)

where (gSM
Z

)2 = g
2
1 + g

2
2, while to 1/⇤4 order this three point function is

hh|��ito dim 8 = hhA
µ⌫
Aµ⌫i

1

v̄T

h
v̄TA

h��

SM +
⇣
1 + h

p

h
44
iL(6)

⌘
hh|��iL(6) + 2 (hh|��iL(6))2

+ (hh|��iL(6))|
C

(6)
i !C

(8)
i

i
(3.8)

where

h

p

h
44
iL(6) = �

1

2
C̃

(6)
H⇤ �

1

4
C̃

(6)
HD

. (3.9)

2Note that
p
gABpg

BC
⌘ �AC and

p
h
IJp

hJK ⌘ �IK .
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Can get ‘all orders’ expressions for  processes: 1 → 2

e.g)   h → γγ

The dipole couplings are defined as
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and

〈W+|q̄p dr〉 = −
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Here the fermions in the dipole connections are in the weak eigenstate basis and a Hermitian

conjugate connection also exists in each case. The expectation values of dA are understood
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3,4, and
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where Aµν = ∂µAν − ∂νAµ, and 〈hAµνAµν〉 = −4(p1 ·p2ε1·ε2 − p1·ε2p2·ε1) when ε1(p1), ε2(p2)
are the polarization vectors of the external γ’s. Similarily the coupling to h-γ-Z is given by

〈h|A(p1)Z(p2)〉 (4.22)

= −〈hAµνZµν〉
√
h
44

2
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Here we have used the geometric electric charge gauge coupling and Weinberg angle [5]
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application: expanding, can now calculate full  corrections. 
With that, we can:

1/Λ4

• check how well (dim-6)2 captures the effect 

• treat  as uncertainty and feed into fits on dim-6 
coefficients 

• think about how to pin down new coefficients with future 
measurements

1/Λ4



Can get ‘all orders’ expressions for  processes: 1 → 2

𝒜hγγ
SM

2
+ 2 Re (𝒜hγγ

SM)⟨h |γγ⟩ℒ(6) + ⟨h |γγ⟩2
ℒ(6)

⟨h |γγ⟩ℒ(6) = [
g2

2C̃(6)
HB + g2

1C̃(6)
HW − g1g2C̃(6)

HWB

(g2
1 + g2

2) v̄T ]defining:

(dim-6)2 estimate: 

30

e.g)   h → γγ



Can get ‘all orders’ expressions for  processes: 1 → 2

𝒜hγγ
SM

2
+ 2 Re (𝒜hγγ

SM)⟨h |γγ⟩ℒ(6) + ⟨h |γγ⟩2
ℒ(6)

⟨h |γγ⟩ℒ(6) = [
g2

2C̃(6)
HB + g2

1C̃(6)
HW − g1g2C̃(6)
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(g2
1 + g2

2) v̄T ]defining:

(dim-6)2 estimate: 

30

𝒜hγγ
SM

2
+2 Re (𝒜hγγ

SM) (1 + ⟨ h
44⟩

ℒ(6))⟨h |γγ⟩ℒ(6) + (1 + 4v̄T Re (𝒜hγγ
SM)) (⟨h |γγ⟩ℒ(6))2

+2 Re (𝒜hγγ
SM)

g2
2C̃(8)

HB + g2
1 (C̃(8)

HW − C̃(8)
HW,2) − g1g2C̃(8)

HWB

(g2
1 + g2

2) v̄T

 Full  result:𝒪(1/Λ4)

e.g)   h → γγ



Can get ‘all orders’ expressions for  processes: 1 → 2

31

Significant differences between full and (dim6)2 result!
At , only involves  operators1/Λ4 𝒪(10)

…even captured incorrectly by just (dim-6)2 (⟨h |γγ⟩ℒ(6))
2

e.g)   h → γγ

𝒜hγγ
SM

2
+2 Re (𝒜hγγ

SM) (1 + ⟨ h
44⟩

ℒ(6))⟨h |γγ⟩ℒ(6) + (1 + 4v̄T Re (𝒜hγγ
SM)) (⟨h |γγ⟩ℒ(6))2
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HW − C̃(8)
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(g2
1 + g2

2) v̄T

 Full  result:𝒪(1/Λ4)



Working to  : bottom up1/Λ4

32

Quantify effect by randomly drawing coefficients and comparing 
dim-6, (dim-6)2 and full  result1/Λ4

e.g)   h → γγ



How do you randomly draw coefficients?

For weakly coupled UV theories, well known classification of 
operators up to dim-8 into ‘tree’ and ‘loop’ level

Tree Loop

[Arzt’93], [Einhorn, Wudka ’13], [Craig et al ’20]

Dim 6

Dim 8

 = any fermion,  = Higgs,  = any field strength,  = covariant derivativeψ, ψ̄ H X D

H2X2, X3, ⋯ψ̄ ψ H2D, H4D2, ψ2 H3, ⋯

H2X3, X4, ⋯
H4X2, ψ4 X, ψ5 H ⋯

ψ̄ ψ H4D

33



impact  h → γγ, h → Zγ

How do you randomly draw coefficients?

For weakly coupled UV theories, well known classification of 
operators up to dim-8 into ‘tree’ and ‘loop’ level

Tree Loop

[Arzt’93], [Einhorn, Wudka ’13], [Craig et al ’20]

Dim 6

Dim 8

 = any fermion,  = Higgs,  = any field strength,  = covariant derivativeψ, ψ̄ H X D

H2X2, X3, ⋯ψ̄ ψ H2D, H4D2, ψ2 H3, ⋯

H2X3, X4, ⋯
H4X2, ψ4 X, ψ5 H ⋯

ψ̄ ψ H4D

33



impact  h → γγ, h → Zγ
impact  Z → ψ̄ ψ

How do you randomly draw coefficients?

For weakly coupled UV theories, well known classification of 
operators up to dim-8 into ‘tree’ and ‘loop’ level

Tree Loop

[Arzt’93], [Einhorn, Wudka ’13], [Craig et al ’20]

Dim 6

Dim 8

 = any fermion,  = Higgs,  = any field strength,  = covariant derivativeψ, ψ̄ H X D

H2X2, X3, ⋯ψ̄ ψ H2D, H4D2, ψ2 H3, ⋯

H2X3, X4, ⋯
H4X2, ψ4 X, ψ5 H ⋯

ψ̄ ψ H4D

33



34

Quantify effect by randomly drawing coefficients and comparing 
dim-6, (dim-6)2 and full  result1/Λ4

Tree level operators: draw coefficients at random from a 
gaussian with mean 0, width 1

Loop level operators: draw coefficients at random from 
a gaussian with mean 0, width 0.01

Working to  : bottom up1/Λ4

e.g)   h → γγ
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Figure 1. The deviations in h ! �� from the O(v2/⇤2) (red line) and partial-square (black
line) results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions).
In the left panel the coe�cients determining the O(v2/⇤2) and partial-square results are C

(6)
HB

=

�0.01, C(6)
HW

= 0.004, C(6)
HWB

= 0.007, C(6)
HD

= �0.74, and �G
(6)
F

= �1.6. In the right panel they are

C
(6)
HB

= 0.007, C(6)
HW

= 0.007, C(6)
HWB

= �0.015, C(6)
HD

= 0.50, and �G
(6)
F

= 1.26.

Figure 2. The deviations in h ! Z� from the O(v2/⇤2) (red line) and partial-square (black
line) results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions).
In the left panel the coe�cients determining the O(v2/⇤2) and partial-square results are C

(6)
HB

=

�0.01, C(6)
HW

= 0.02, C(6)
HWB

= �0.011, C(6)
HD

= 0.53, and �G
(6)
F

= 0.13. In the right panel they are

C
(6)
HB

= 0.002, C(6)
HW

= 0.001, C(6)
HWB

= �0.001, C(6)
HD

= 0.28, and �G
(6)
F

= �1.15.
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 only1/Λ2

1/Λ2 + (dim-6)2

Contours show range 
of effects once full 

 effects are 
included (for fixed 

 result)

1/Λ4

1/Λ2, (dim-6)2

Working to  : bottom up1/Λ4

e.g)   h → γγ
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Figure 1. The deviations in h ! �� from the O(v2/⇤2) (red line) and partial-square (black
line) results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions).
In the left panel the coe�cients determining the O(v2/⇤2) and partial-square results are C

(6)
HB

=

�0.01, C(6)
HW

= 0.004, C(6)
HWB

= 0.007, C(6)
HD

= �0.74, and �G
(6)
F

= �1.6. In the right panel they are
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HB
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Figure 2. The deviations in h ! Z� from the O(v2/⇤2) (red line) and partial-square (black
line) results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions).
In the left panel the coe�cients determining the O(v2/⇤2) and partial-square results are C

(6)
HB

=

�0.01, C(6)
HW

= 0.02, C(6)
HWB

= �0.011, C(6)
HD

= 0.53, and �G
(6)
F

= 0.13. In the right panel they are

C
(6)
HB

= 0.002, C(6)
HW

= 0.001, C(6)
HWB

= �0.001, C(6)
HD

= 0.28, and �G
(6)
F

= �1.15.
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 only1/Λ2

1/Λ2 + (dim-6)2

For fixed deviation, e.g. 
δ(h → γγ) = 0.2

Working to  : bottom up1/Λ4

e.g)   h → γγ
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Figure 1. The deviations in h ! �� from the O(v2/⇤2) (red line) and partial-square (black
line) results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions).
In the left panel the coe�cients determining the O(v2/⇤2) and partial-square results are C

(6)
HB

=

�0.01, C(6)
HW

= 0.004, C(6)
HWB

= 0.007, C(6)
HD

= �0.74, and �G
(6)
F

= �1.6. In the right panel they are

C
(6)
HB

= 0.007, C(6)
HW

= 0.007, C(6)
HWB

= �0.015, C(6)
HD

= 0.50, and �G
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F

= 1.26.

Figure 2. The deviations in h ! Z� from the O(v2/⇤2) (red line) and partial-square (black
line) results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions).
In the left panel the coe�cients determining the O(v2/⇤2) and partial-square results are C

(6)
HB

=

�0.01, C(6)
HW

= 0.02, C(6)
HWB

= �0.011, C(6)
HD

= 0.53, and �G
(6)
F

= 0.13. In the right panel they are

C
(6)
HB

= 0.002, C(6)
HW

= 0.001, C(6)
HWB

= �0.001, C(6)
HD

= 0.28, and �G
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F

= �1.15.
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 only1/Λ2

1/Λ2 + (dim-6)2

For fixed deviation, e.g. 
δ(h → γγ) = 0.2

 interpretation 
assuming interference 

only: ~2.3 TeV

Λ

Working to  : bottom up1/Λ4

e.g)   h → γγ
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Figure 1. The deviations in h ! �� from the O(v2/⇤2) (red line) and partial-square (black
line) results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions).
In the left panel the coe�cients determining the O(v2/⇤2) and partial-square results are C

(6)
HB

=

�0.01, C(6)
HW

= 0.004, C(6)
HWB

= 0.007, C(6)
HD

= �0.74, and �G
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= �1.6. In the right panel they are
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HW
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HWB
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HD

= 0.50, and �G
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Figure 2. The deviations in h ! Z� from the O(v2/⇤2) (red line) and partial-square (black
line) results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions).
In the left panel the coe�cients determining the O(v2/⇤2) and partial-square results are C

(6)
HB

=

�0.01, C(6)
HW

= 0.02, C(6)
HWB

= �0.011, C(6)
HD

= 0.53, and �G
(6)
F

= 0.13. In the right panel they are

C
(6)
HB

= 0.002, C(6)
HW

= 0.001, C(6)
HWB

= �0.001, C(6)
HD

= 0.28, and �G
(6)
F

= �1.15.

– 17 –

 only1/Λ2

1/Λ2 + (dim-6)2

For fixed deviation, e.g. 
δ(h → γγ) = 0.2

 interpretation 
assuming interference 

only: ~2.3 TeV

Λ}
 interpretation with 

full : [0.5 - 2.7 TeV]
Λ

Working to  : bottom up1/Λ4

e.g)   h → γγ
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Figure 1. The deviations in h ! �� from the O(v2/⇤2) (red line) and partial-square (black
line) results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions).
In the left panel the coe�cients determining the O(v2/⇤2) and partial-square results are C
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Figure 2. The deviations in h ! Z� from the O(v2/⇤2) (red line) and partial-square (black
line) results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions).
In the left panel the coe�cients determining the O(v2/⇤2) and partial-square results are C

(6)
HB

=

�0.01, C(6)
HW

= 0.02, C(6)
HWB

= �0.011, C(6)
HD

= 0.53, and �G
(6)
F

= 0.13. In the right panel they are

C
(6)
HB

= 0.002, C(6)
HW

= 0.001, C(6)
HWB

= �0.001, C(6)
HD

= 0.28, and �G
(6)
F

= �1.15.
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Why such a large effect?

Following tree/loop classification, 
all operators at dim-6 are loop-level

⟨h |γγ⟩to v2/Λ2 ∼ 0.01( C(6)

0.01 ) v2

Λ2

Tree effects enter at dim-8

⟨h |γγ⟩to v4/Λ4 ∼ (C(8)

1.0 ) v4

Λ4

similar result for h → Zγ

Working to  : bottom up1/Λ4

e.g)   h → γγ
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= �0.001, C(6)
HD

= 0.28, and �G
(6)
F

= �1.15.

– 17 –

Why such a large effect?

Following tree/loop classification, 
all operators at dim-6 are loop-level

⟨h |γγ⟩to v2/Λ2 ∼ 0.01( C(6)

0.01 ) v2

Λ2

Tree effects enter at dim-8

⟨h |γγ⟩to v4/Λ4 ∼ (C(8)

1.0 ) v4

Λ4

 effects can compete despite 
higher order in Λ

similar result for h → Zγ

Working to  : bottom up1/Λ4

e.g)   h → γγ
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Figure 3. The deviations in Z ! `` from the O(v2/⇤2) (red line) and partial-square (black line)
results, and the full O(v4/⇤4) results (green ±1��, yellow ±2��, and grey ±3�� regions). In the left
panel the coe�cients determining the O(v2/⇤2) and partial-square results are C1,(6)

H`
= �0.46, C3,(6)

H`
=

1.24, C(6)
He

= 1.53, C(6)
HD

= �0.79, C(6)
HWB

= 0.007, and �G
(6)
F

= 0.16. In the right panel they are

C
1,(6)
H`

= 1.55, C3,(6)
H`

= �0.71, C(6)
He

= 0.23, C(6)
HD

= �0.51, C(6)
HWB

= �0.008, and �G
(6)
F

= �0.44.

SMEFT result as an estimate of a ‘truncation uncertainty’; and (2) taking the fractional un-

certainty on each coe�cient to be v
2
/⇤2. The former procedure uses the partial O(v4/⇤4)

information in the L(6) operators to take all the calculable terms when complete higher orders

are not available. The latter procedure instead only scales the measured coe�cient by the

ratio of dimensionful parameters.

We test the uncertainty procedures by taking the full O(v4/⇤4) SMEFT calculation to

provide the ‘true’ value of a given coe�cient. The shift in the partial width relative to the

SM is calculated for a set of coe�cients drawn from a gaussian distribution. Fixing the value

of this shift and taking a given value of ⇤, we determine the change in one of the coe�cients

when calculating the partial width at O(v2/⇤2), or with the partial-square procedure. The

deviation in the coe�cient value relative to its initial value is taken as the ‘truncation error’.

Figure 4 shows the distribution of this error for C(6)

HW
in the O(v2/⇤2) (left) and partial-

square (right) calculations of �(h ! ��) using 50,000 samplings of the coe�cients and taking

⇤ = 2.5 TeV. This error distribution can be compared to the distribution of uncertainty

estimates shown in Fig. 5, where the distribution in the left panel is the di↵erence between

the O(v2/⇤2) and partial-square calculations, and in the right panel it is v
2
/⇤2 times the

coe�cient. The uncertainty estimate is 1-2 orders of magnitude smaller than the error, with

the v
2
/⇤2 distribution narrower by a factor of a few.

The validity of an uncertainty estimate is typically demonstrated by the pull distribution,

defined as the error divided by the uncertainty. An unbiased estimate of the central value

– 18 –

e.g.) Z → ℓ+ℓ−

⟨Z |ℓℓ⟩to v2/Λ2 ∼ (C(6)

1.0 ) v2

Λ2

⟨Z |ℓℓ⟩to v4/Λ4 ∼ (C(8)

1.0 ) v4

Λ4

Now tree-level operators 
present for both dim-6 and 

dim-8

smaller impact, but still present, 
especially if  is smallΛ

Working to  : bottom up1/Λ4

38
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Working to : top down 1/Λ4

Try a specific UV model: kinetically mixed U(1)

integrate out to dim-8 (tree level only)

Δℒ = −
1
4

KμνKμν +
1
2

m2
KKμKμ −

k
2

BμνKμν

Δℒ = −
k2

2m2
K

jμ jμ +
k2 − k4

2m4
K

(∂2jμ) jμ +
g2

1k4

4m4
K

(H†H) jμ jμ

jμ = ∑
ψ

(−g1yψ) ψ̄γμψ + (−
1
2

g1) H†iDμH

where 
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Table 3. Matching coe�cients onto operators in L
(8) relevant for �(h ! ��) and �(Z !  ̄ ). In ad-

dition to these matching contributions, there are four-fermion operators and four-point contributions.
See the results in Eqn. 6.11, which include these terms and neglect only e↵ects suppressed by Yukawa
couplings.

field strengths. This is an accidental pattern due to the renormalizability of some

UV physics models. Such matching patterns are not present in non-renormalizable

UV theories in general [49]. They also do not apply to operators with higher mass

dimensions. The result in Eqn. (6.11) shows that gauge field-strength operators can

receive tree-level matching contributions at L
(8) in a weakly-coupled renormalizable

UV model. This is consistent with the results in Ref. [49, 50]. At L
(7), the seesaw

model also leads to operators with gauge field strengths [56] in tree-level matching.

These examples show that the operator normalization pattern of Ref. [48] does not

extend to operators of arbitrary mass dimension in the SMEFT.

• The rearrangement of derivative terms at L(8) leads to matching coe�cients proportional

to v̄
2

T
/m

2

K
for L

(6). Formally, an infinite series in (v̄2
T
/m

2

K
)n is present in matching

coe�cients for higher-dimensional operators. This is due to rearranging matching terms

in the non-redundant operator basis. However, as this dependence is an artifact of this

particular basis we expect it to cancel in the full result. This occurs as expected.

Restricting the results to the subset of operators that contribute to �(h ! ��) and �(Z !

 ̄ ), the matching results for L(8) operators are given in Table 3.
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Table 2. L(6) matching coe�cients; here b1 = k
2
� 2� (k2 � k

4) v̄
2
T

m
2
K
. Flavour indicies are suppressed

and the heavy field does not violate U(3)5 flavour symmetry. Fierz rearrangements of the four-fermion
operators are allowed.

at L(8) requires non-trivial manipulations. These terms can be reduced into the form

j
µ
@
2
jµ ' g

2

1

h
(DµH

†)(D⌫H)(Dµ
H

†)(D⌫
H)� (DµH

†)(D⌫H)(D⌫
H

†)(Dµ
H)

i

+ g
2

1

h
g1(H

†
H)Bµ⌫(D

µ
H

†) i (D⌫
H)� g2 (H

†
H) (Dµ

H
†) i�a (D

⌫
H)W a

µ⌫

i

+
g
2

1
g
2

2

8
W

a

µ⌫W
µ⌫

a (H†
H)2 �

g
4

1

8
Bµ⌫B

µ⌫(H†
H)2 + g

3

1y ( ̄�
µ
 )Bµ⌫ D

⌫

⇣
H

†
H

⌘

�
g
2

1
g
2

2

8
( ̄L�a�

µ
 L)


(H†

H)

✓
H

†
i

$

D
a

µH

◆
+ (H†

�aH)

✓
H

†
i

$

DµH

◆�

�
g
2

1
g
2

2

4

h
4 (H†

H)2(DµH
†
D

µ
H) + � (H†

H)3 (v̄2T � 2(H†
H)) +H

†
�aH (DµH

†
�
a
D

µ
H)

i

+ 2ig21y ( ̄�
µ
 )


�(v̄2T � 2H†

H)

✓
H

†
$

DµH

◆
+ (D⌫H

†)(D⌫
DµH)� (D⌫

DµH
†)(D⌫H)

�

� g
2

1y ( ̄�
µ
 )

⇣
H

†
H

⌘✓
1

2

�
g
2

1 + g
2

2

�✓
H

†
i

$

DµH

◆
+ g

2

1 y 0( ̄0�
µ
 
0)

◆

+ g
2

1y ( ̄�
µ
 )


�
g
2

2

2
 ̄L�µ�

a
 L (H†

�aH) + g2W
a

µ⌫ D
⌫

⇣
H

†
�aH

⌘�
, (6.11)

where a sum is implied over all  L,  , and  
0 pairs, and terms proportional to Yukawa

couplings are neglected. The conventions used for reducing to the operator basis in the L
(8)

matching are those of the geoSMEFT formulation [9], which allows all-orders results in the

v̄T /⇤ expansion to be defined. In this convention derivatives have been moved onto scalar

– 23 –

…

dim-6 dim-8

No operators that 
impact  h → γγ

operators impacting  
 presenth → γγ

∴ at dim-6 level, no effect, while there is an effect if we go to full  1/Λ4

Working to : top down 1/Λ4
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Figure 7. The dependence of �(h ! ��) on the parameters of a U(1) mixing model using the
SMEFT expansion to O(v̄4

T
/m

4
K
). The left plot shows the dependence of the ratio ��↵̂ew

SMEFT(h !

��)/�↵̂ew
SM (h ! ��) on the coupling parameter k for mK = {500, 1000} GeV, for the blue and orange

curves respectively. The right plot shows the relative deviations {±0.01,±0.1,±0.3} of the partial
width in the {mK , k} plane, with intermediate deviations represented by coloured regions. The results
are shown in the ↵̂ew scheme, though results in the m̂W scheme are qualitatively the same. The partial
width has no sensitivity to the model at O(v̄2

T
/m

2
K
) with tree-level matching. Direct experimental

bounds on �(h ! ��) are not available since only ratios of partial widths can be measured directly,
e.g. �(h ! ��)/�(h ! 4`) [57].

All di↵erences between partial-square and full SMEFT results are at order v̄
4

T
/m

4

K
. Such

di↵erences are most important when deviations from the SM are larger, e.g. for lower mass

scales, where experimental analyses are more likely to uncover deviations using the SMEFT

formalism. We show some of the implications of these results in Figs. 8 and 9. A number of

conclusions are apparent:

• The results show significant scheme dependence, which increases when a full SMEFT

result is used. This is expected on general grounds due to the decoupling theorem:

low-energy measured parameters are absorbing the e↵ects of high-scale physics. Scheme

dependence is expected to be reduced only through a global combination of constraining

measurements.

• The model parameters extracted from the partial-square result for the ↵̂ew input-

parameter scheme are constrained more tightly than those at O(v̄4
T
/m

4

K
), given the

< 0.1% precision on the �Z measurement (Fig. 9). The O(v̄2
T
/m

2

K
) constraints are also

overly tight, though less so.

• Results in the m̂W scheme are more consistent across the di↵erent orders in the calcula-

tion. The parameter constraints extracted from the partial-square andO(v̄2
T
/m

2

K
) calcu-

– 27 –

Γ(h → γγ)
Γ(h → γγ)SMEFT

Said differently:


If restricted to   level, appears 
like no constraint from 

1/Λ2

h → γγ

But done fully at , constraint is 
there

1/Λ4

Working to : top down 1/Λ4



So where does this leave us?

Restricted to 2- and 3-pt resonant phenomenology, can think about 
 effects (and beyond!) without introducing a flood of new 

operators
1/Λ4

• geoSMEFT framework: basis where 2 and 3 particle vertices 
sensitive to a minimal # of operators, # ~ constant with mass 
dimension 
 


• Can study select processes to , use them to form 
guidelines for how to include truncation error more generally in 
SMEFT studies

1/Λ4

42

Find (dim-6)2 is not a great proxy for full  effects, 
especially for loop-level SM processes

1/Λ4



So where does this leave us?

Lots to do:

• Expand the ‘laboratory’: more  processes  

• Incorporate into dim-6 coefficient fits 

• Combine with effects from higher loop (NLO) order 

• How to pin down new coefficients, rather than treat them as 
nuisance parameters? 

1 → 2, 2 → 2

THANK YOU!
43



Backup
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Redo classic SMEFT LEP1 analysis to  𝒪(1/Λ4)

EWPD is the ideal controlled case to study SMEFT truncation

1113EWPD LEP legacy

Just Taylor expand the geosmeft effective couplings to second order.

Ex: Helset, 
Corbett, Martin, 
Trott (next week)

Dim 8 EWPD now  
known. One can study the  
error induced in SMEFT 
truncation in this controlled 
and ideal example.

Taylor expand obs 
to second order.

SMEFT EWPD

11M.Trott, Durham, 6th September 2017M.Trott, Oct 27th  2017 3312

Once you know  

You just Taylor expand to the desired order using the geo SMEFT results 

EWPD LEP legacy

EWPD is essentially solved in closed form. 

Consider a             coupling to a fermion bilinear.

Compact all            orders answer!

W±, Z
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What about GF?
GF involves more than quadratic terms:

However, since GF derived at muon mass scale  
and SM term is from L4, # of higher dimensional contributions is 

dramatically reduced

(D ∼ mμ ≪ Λ)

All orders result is possible even for contact terms:

[Hays, Helset, Martin, Trott 2007.00565]

C(8+2n)
4ℓ,2 (H†H)1+n (ℓ̄2γμσiℓ2) (ℓ̄1γμσiℓ1) iC(8+2n)

4ℓ,5 ϵijk (H†H)n (H†σiH) (ℓ̄2γμσjℓ2) (ℓ̄1γμσkℓ1)

𝒢4pt
F =

1
v̄2

T (C̃(6)
μccμ + C̃(6)

μμμe +
C̃(8+2n)

4ℓ,2

2n
+

C̃(8+2n)
4ℓ,5

2n )
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Tree vs. Loop
ℒUV =
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heavy stuff light stuffmass of heavy stuff M, 
interactions with 2 heavy fields

Integrate out   at tree-level = solve EOM, expand in 1/M Ω
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(at dim-6, similar but 
lengthier for dim-8)+ …

[from Craig et al ’20]

Expanding out, can see what terms are present. 
E.g.) no field strengths at dim-6!  



Powerful new tool

# of operators and their field content can be generated 
automatically via Hilbert Series

given symmetry 
group G,  

fields φi, ψi, XiL,R

# and form of all 
invariant (Lorentz & 
gauge) operators, 

Hilbert 
Series

[Lehman, AM ’15, Henning et al ’15, ’17]
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Powerful new tool

# of operators and their field content can be generated 
automatically via Hilbert Series

given symmetry 
group G,  

fields φi, ψi, XiL,R

# and form of all 
invariant (Lorentz & 
gauge) operators, 

Hilbert 
Series

• extends to all orders 
• includes all IBP, EOM redundancies 
• works for all sorts of EFT (SMEFT, nonlinear reps, non-

relativistic QFT) [Kobach, Pal ’17, ’18, Graf et al ’20]

[Lehman, AM ’15, Henning et al ’15, ’17]
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Hilbert series:

HSM =

Z
dµLorentz dµgauge
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generating function — generates 
all possible polynomials of fields 

( φ², φ ψ, ψ² φ,etc.) 
and derivatives 

projects out invariants from 
polynomial (relies on character 

orthonormality)

removes IBP redundancies
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Real representation translation

H†σaH = −
1
2

ϕIΓI
a,JϕJ

H†D̂μH = − ϕIγI
4,J (Dμϕ)J = (Dμϕ)I

γI
4,JϕJ

H†D̂D̂μ
aH = − ϕIγI

a,J (Dμϕ)J = (Dμϕ)I
γI

a,JϕJ

Using  = generators in real representation and , translate γA ΓA = γAγ4


