SMEFT beyond $\mathcal{O}(1/\Lambda^2)$

Adam Martin (<u>amarti41@nd.edu</u>)

based on 2001.01453 with A. Helset and M. Trott (NBI) + 2007.00565 w/ C. Hays (Oxford), A. Helset, M.Trott + 2102.02819 w/ T. Corbett, A. Helset, M. Trott

Oklahoma State, Mar 18th 2021

No obvious signs of new light states at LHC — parametrize BSM effects with SM-EFT = SMEFT

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d} \sum_{i} \frac{c_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}(Q, u_c, d_c, L, e_c, H, D_{\mu}, F_{\mu\nu} \cdots)$$

write down all operators, lowest mass dimension terms dominate in the IR

Odd dimensions always violate B or L, so focus has been on dim-6 (~60 operators)

$$\begin{aligned} \mathcal{Q}_{HI}^{(1)} &= (iH^{\dagger} \overleftarrow{D}_{\mu} H)(\overline{l}\gamma^{\mu} l) \\ \mathcal{Q}_{He} &= (iH^{\dagger} \overleftarrow{D}_{\mu} H)(\overline{e}\gamma^{\mu} e) \\ \mathcal{Q}_{Hq}^{(1)} &= (iH^{\dagger} \overleftarrow{D}_{\mu} H)(\overline{q}\gamma^{\mu} q) \\ \mathcal{Q}_{Hq}^{(3)} &= (iH^{\dagger} \overleftarrow{D}_{\mu}^{i} H)(\overline{q}\sigma^{i}\gamma^{\mu} q) \\ \mathcal{Q}_{Hu} &= (iH^{\dagger} \overleftarrow{D}_{\mu} H)(\overline{u}\gamma^{\mu} u) \\ \mathcal{Q}_{Hd} &= (iH^{\dagger} \overleftarrow{D}_{\mu} H)(\overline{d}\gamma^{\mu} d) \end{aligned}$$

Top data Integration by parts (IBP) or field $\mathbf{P}_{prst}^{(1)}$ (EOW) redundancy) $\mathcal{Q}_{qq}^{(3)}_{prst} = (\bar{q}_{p}\gamma^{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\delta}\mu_{I}\dot{q}_{t})_{r} \cdots$ $\mathcal{Q}_{prst}^{(3)} = (\bar{q}_{p}\gamma^{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\delta}\mu_{I}\dot{q}_{t})_{r} \cdots$ $\mathcal{Q}_{prst}^{uu} = (\bar{u}_{p}\gamma^{\mu}u_{r})(\bar{u}_{s}\gamma^{\Delta}\mu_{u}\dot{u}_{t}),$ resputtible operators but don't change physics $\mathcal{Q}_{prst}^{(8)} = (\bar{u}_{p}\gamma^{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma_{\mu}T^{A}d_{t}),$ TGC/multi-boson

B anomalies

Top data Integration by parts (IBP) or field $P_{prst}^{(1)}(\bar{q}_{i}) = (\bar{q}_{p}\gamma^{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\delta}\mu_{i}q_{t}),$ $Q_{qq}^{(3)}_{prst} = (\bar{q}_{p}\gamma^{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\delta}\mu_{i}q_{t}),$ $Q_{prst}^{uu} = (\bar{u}_{p}\gamma^{\mu}u_{r})(\bar{u}_{s}\gamma^{\Lambda}_{\mu}u_{t}),$ $P_{prst}^{(1)} = (\bar{u}_{p}\gamma^{\mu}u_{r})(\bar{u}_{s}\gamma^{\Lambda}_{\mu}u_{t}),$ $P_{prst}^{(1)} = (\bar{u}_{p}\gamma^{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma_{\mu}T^{A}d_{t}),$ $P_{prst}^{(8)} = (\bar{u}_{p}\gamma^{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma_{\mu}T^{A}d_{t}),$ $P_{prst}^{(8)} = (\bar{u}_{p}\gamma^{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma_{\mu}T^{A}d_{t}),$

B anomalies

$$\begin{aligned} \mathcal{Q}_{HI}^{(1)} &= (iH^{\dagger}\overleftarrow{D}_{\mu}H)(\bar{I}\gamma^{\mu}I) \\ \mathcal{Q}_{He} &= (iH^{\dagger}\overleftarrow{D}_{\mu}H)(\bar{e}\gamma^{\mu}e) \\ \mathcal{Q}_{Hq}^{(1)} &= (iH^{\dagger}\overleftarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q) \\ \mathcal{Q}_{Hq}^{(3)} &= (iH^{\dagger}\overleftarrow{D}_{\mu}H)(\bar{q}\sigma^{i}\gamma^{\mu}q) \\ \mathcal{Q}_{Hu} &= (iH^{\dagger}\overleftarrow{D}_{\mu}H)(\bar{u}\gamma^{\mu}u) \\ \mathcal{Q}_{Hd} &= (iH^{\dagger}\overleftarrow{D}_{\mu}H)(\bar{d}\gamma^{\mu}d) \end{aligned}$$

Top data
Integration by parts (IBP) or field

$$P_{prst}^{(1)}(\bar{q}_{r}) = (\bar{q}_{p}\gamma^{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\delta}\mu_{\mu}q_{l})_{+} \cdots$$

 $Q_{prst}^{(3)} = (\bar{q}_{p}\gamma^{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\delta}\mu_{\mu}q_{l})_{+} \cdots$
 $Q_{prst}^{uu} = (\bar{u}_{p}\gamma^{\mu}u_{r})(\bar{u}_{s}\gamma^{\Lambda}\mu_{u}^{2}),$
respirate $\bar{q}_{prst}^{(1)} = (\bar{u}_{p}\gamma^{\mu}to)(\bar{d}_{p}\partial_{t}t don't change physics TGC/multi-boson
 $Q_{prst}^{(8)} = (\bar{u}_{p}\gamma^{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma_{\mu}T^{A}d_{t}),$$

Ex:
$$B_{\mu} \rightarrow B_{\mu} + \frac{2}{g'} \frac{C_{H\ell}^{(1)}}{\Lambda^2} (\bar{L} \gamma_{\mu} L)$$
 removes $\hat{Q}_{H\ell}^{(1)}$ in favor of $\hat{Q}_{Hq}^{(1)}, \hat{Q}_{He}, \hat{Q}_{Hu}, (\partial^{\rho} B_{\rho\mu})(\bar{L} \gamma^{\mu} L)$, etc.

B anomalies

$$\begin{aligned} \mathcal{Q}_{HI}^{(1)} &= (iH^{\dagger}\overleftrightarrow{D}_{\mu}H)(\bar{I}\gamma^{\mu}I) \\ \mathcal{Q}_{He} &= (iH^{\dagger}\overleftarrow{D}_{\mu}H)(\bar{e}\gamma^{\mu}e) \\ \mathcal{Q}_{Hq}^{(1)} &= (iH^{\dagger}\overleftarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q) \\ \mathcal{Q}_{Hq}^{(3)} &= (iH^{\dagger}\overleftarrow{D}_{\mu}H)(\bar{q}\sigma^{i}\gamma^{\mu}q) \\ \mathcal{Q}_{Hu} &= (iH^{\dagger}\overleftarrow{D}_{\mu}H)(\bar{u}\gamma^{\mu}u) \\ \mathcal{Q}_{Hd} &= (iH^{\dagger}\overleftarrow{D}_{\mu}H)(\bar{d}\gamma^{\mu}d) \end{aligned}$$

Top data
Integration by parts (IBP) or field

$$P_{prst}^{(1)}(\bar{q}_{r}) = (\bar{q}_{p} \gamma^{\mu} \tau^{I} q_{r}) (\bar{q}_{s} \gamma^{\delta} \phi_{l} \dot{q}_{l}) + \cdots$$

 $Q_{prst}^{(3)} = (\bar{q}_{p} \gamma^{\mu} \tau^{I} q_{r}) (\bar{q}_{s} \gamma^{\delta} \phi_{l} \dot{q}_{l}) + \cdots$
 $Q_{prst}^{uu} = (\bar{u}_{p} \gamma^{\mu} u_{r}) (\bar{u}_{s} \gamma^{\Lambda} \dot{u}_{t}),$
respectively and the second state of the second s

Ex:
$$B_{\mu} \rightarrow B_{\mu} + \frac{2}{g'} \frac{C_{H\ell}^{(1)}}{\Lambda^2} (\bar{L} \gamma_{\mu} L)$$
 removes $\hat{Q}_{H\ell}^{(1)}$ in favor of $\hat{Q}_{Hq}^{(1)}, \hat{Q}_{He}, \hat{Q}_{Hu}, (\partial^{\rho} B_{\rho\mu})(\bar{L} \gamma^{\mu} L)$, etc.

B anomalies Therefore: SMEFT analysis requires working with a complete 'basis' of operators. Often "Warsaw basis"

Pattern in deviations informs about new physics scale and type

How does SMEFT contribute? State of the art:

$$|A|^{2} = |A_{SM}|^{2} + \frac{2Re(A_{SM}A_{6})}{\Lambda^{2}} + \frac{|A_{6}|^{2}}{\Lambda^{4}} + \cdots$$

How does SMEFT contribute? State of the art:

How does SMEFT contribute? State of the art:

How does SMEFT contribute? State of the art:

Why would you ever go beyond $1/\Lambda^2$?

- Uncertainty: To know error on $1/\Lambda^2\,$ piece, we should know next order

- Uncertainty: To know error on $1/\Lambda^2$ piece, we should know next order
- Interference can be suppressed: e.g. if there is a mismatch in the helicity of the SM and the $1/\Lambda^2$ operators

Classic example: $\mathcal{O}_G = f_{ABC} G^A_{\mu\nu} G^{B,\nu\rho} G^{C,\mu}_{\rho}$ and dijets

SM and \mathcal{O}_G produce different helicity gluons! No interference, so first effect is at $(\mathcal{O}_G)^2$

[Shadmi, Dixon '93]

• Energy considerations:

by dimensional analysis:

$$\frac{2 \operatorname{Re}(A_{SM}^*A_6)}{\Lambda^2} \sim \frac{E^2}{\Lambda^2} \quad \left(\operatorname{or} \frac{v^2}{\Lambda^2}\right)$$
$$\frac{\left|A_6\right|^2}{\Lambda^4} \sim \frac{E^4}{\Lambda^4} \quad \left(\operatorname{or} \frac{v^4}{\Lambda^4}, \frac{v^2 E^2}{\Lambda^4}\right)$$

• Energy considerations:

by dimensional analysis:

$$\frac{2 \operatorname{Re}(A_{SM}^*A_6)}{\Lambda^2} \sim \frac{E^2}{\Lambda^2} \quad \left(\operatorname{or} \frac{v^2}{\Lambda^2}\right)$$
$$\frac{\left|A_6\right|^2}{\Lambda^4} \sim \frac{E^4}{\Lambda^4} \quad \left(\operatorname{or} \frac{v^4}{\Lambda^4}, \frac{v^2 E^2}{\Lambda^4}\right)$$

faster growth!

• Energy considerations:

by dimensional analysis:

$$\frac{2 \operatorname{Re}(A_{SM}^* A_6)}{\Lambda^2} \sim \frac{E^2}{\Lambda^2} \quad \left(\operatorname{or} \frac{v^2}{\Lambda^2} \right)$$
$$\frac{\left| A_6 \right|^2}{\Lambda^4} \sim \frac{E^4}{\Lambda^4} \quad \left(\operatorname{or} \frac{v^4}{\Lambda^4}, \frac{v^2 E^2}{\Lambda^4} \right) \quad \text{faster growth!}$$

For high energy measurement (LHC, tails of kinematic distributions), $1/\Lambda^4$ increasingly important

OK, lets just include new physics squared piece

$$|A|^{2} = |A_{SM}|^{2} + \frac{2Re(A_{SM}A_{6})}{\Lambda^{2}} + \frac{|A_{6}|^{2}}{\Lambda^{4}} + \cdots$$

easy, known, but not the whole story

OK, lets just include new physics squared piece

$$|A|^{2} = |A_{SM}|^{2} + \frac{2Re(A_{SM}A_{6})}{\Lambda^{2}} + \frac{|A_{6}|^{2}}{\Lambda^{4}} + \cdots$$

easy, known, but not the whole story

But (dim-6)² is the same order in $1/\Lambda$ as dim-8 effects interfering with SM...

$$\frac{|A_6|^2}{\Lambda^4} + 2\frac{Re(A_{SM}^*A_8)}{\Lambda^4} + \cdots$$

so both should be included to expand consistently

OK, lets just include new physics squared piece

$$|A|^{2} = |A_{SM}|^{2} + \frac{2Re(A_{SM}A_{6})}{\Lambda^{2}} + \frac{|A_{6}|^{2}}{\Lambda^{4}} + \cdots$$

easy, known, but not the whole story

But (dim-6)² is the same order in $1/\Lambda$ as dim-8 effects interfering with SM...

$$\frac{|A_6|^2}{\Lambda^4} + 2\frac{Re(A_{SM}^*A_8)}{\Lambda^4} + \cdots$$

so both should be included to expand consistently

Extending to dim-8 introduces 993 more operators, even assuming fermion flavor universality!

Theoretically: need to know how 993 new effects enter?! Experimentally: means 993 more measurements needed ?!

Going even further...

operators at given mass dimension known (Hilbert series method), but explodes with mass dim!

Q: Is it phenomenologically viable to go beyond dimension-6?

Q: Does it make a difference? Meaning, e.g. does (dim-6)² suffice to capture $1/\Lambda^4$ effects?

What do these operators actually do?

$\mathcal{O}_{8,HD}$	$(H^{\dagger}H)^2(D_{\mu}H^{\dagger}D^{\mu}H)$	$\mathcal{O}_{8,DH ilde{W}3b}$	$\epsilon_{IJK} \left(D^{\mu} H^{\dagger} \tau^{I} D^{\nu} H \right) \left(W^{J}_{\mu\rho} \widetilde{W}^{\rho,K}_{\nu} + \widetilde{W}^{J}_{\mu\rho} W^{\rho,K}_{\nu} \right)$
$\mathcal{O}_{8,HD2}$	$\delta_{IJ} (H^{\dagger}H) (H^{\dagger}\tau^{I}H) (D^{\mu}H^{\dagger}\tau^{J}D_{\mu}H)$	$\mathcal{O}_{8,DHWB}$	$\delta_{IJ} \left(D^{\mu} H^{\dagger} \tau^{I} D_{\mu} H \right) B^{ ho\sigma} W^{J}_{ ho\sigma}$
$\mathcal{O}_{8,DHB}$	$(D^{\mu}H^{\dagger} D^{\nu}H)B_{\mu\rho}B^{ ho}_{ u}$	$\mathcal{O}_{8,DH ilde{W}B}$	$\delta_{IJ} \left(D^{\mu} H^{\dagger} \tau^{I} D_{\mu} H \right) B^{\rho\sigma} \widetilde{W}^{J}_{\rho\sigma}$
$\mathcal{O}_{8,DHB2}$	$(D^{\mu}H^{\dagger}D_{\mu}H)B^{ ho\sigma}B_{ ho\sigma}$	$\mathcal{O}_{8,DHWB2}$	$i \delta_{IJ} (D^{\mu}H^{\dagger}\tau^{I}D^{\nu}H)(B_{\mu\rho}W^{\rho,J}_{\nu} - B_{\nu\rho}W^{\rho,J}_{\mu})$
$\mathcal{O}_{8,DH ilde{B}2}$	$(D^{\mu}H^{\dagger}D_{\mu}H)B^{ ho\sigma}\widetilde{B}_{ ho\sigma}$	$\mathcal{O}_{8,DHWB3}$	$\delta_{IJ} \left(D^{\mu} H^{\dagger} \tau^{I} D^{\nu} H \right) \left(B_{\mu\rho} W^{\rho,J}_{\nu} + B_{\nu\rho} W^{\rho,J}_{\mu} \right)$
$\mathcal{O}_{8,DHG}$	$\delta_{AB} \left(D^{\mu} H^{\dagger} D^{\nu} H \right) G^{A}_{\mu\rho} G^{\rho,B}_{\nu}$	$\mathcal{O}_{8,DH ilde{W}B2}$	$\delta_{IJ} \left(D^{\mu} H^{\dagger} \tau^{I} D^{\nu} H \right) \left(B^{\rho}_{[\mu} \widetilde{W}^{J}_{\nu]\rho} - \widetilde{B}^{\rho}_{[\mu} W^{J}_{\nu]\rho} \right)$
$\mathcal{O}_{8,DHG2}$	$\delta_{AB} \left(D^{\mu} H^{\dagger} D_{\mu} H \right) G^{\rho\sigma,A} G^{B}_{\rho\sigma}$	$\mathcal{O}_{8,DH ilde{W}B3}$	$\delta_{IJ} \left(D^{\mu} H^{\dagger} \tau^{I} D^{\nu} H \right) \left(B^{\rho}_{\{\mu} \widetilde{W}^{J}_{\nu\}\rho} + \widetilde{B}^{\rho}_{\{\mu} W^{J}_{\nu\}\rho} \right)$
$\mathcal{O}_{8,DH ilde{G}2}$	$\delta_{AB} \left(D^{\mu} H^{\dagger} D_{\mu} H \right) G^{\rho\sigma,A} \widetilde{G}^{B}_{\rho\sigma}$	$\mathcal{O}_{8,HDHB}$	$i (H^{\dagger}H) (D_{\mu}H^{\dagger} D_{\nu}H) B^{\mu\nu}$
$\mathcal{O}_{8,DHW}$	$\delta_{IJ} \left(D^{\mu} H^{\dagger} D^{\nu} H \right) W^{I}_{\mu\rho} W^{\rho,J}_{\nu}$	$\mathcal{O}_{8,HDH ilde{B}}$	$i (H^{\dagger}H) (D_{\mu}H^{\dagger} D_{\nu}H) \widetilde{B}^{\mu\nu}$
$\mathcal{O}_{8,DHW2}$	$\delta_{IJ} \left(D^{\mu} H^{\dagger} D_{\mu} H \right) W^{\rho\sigma,I} W^{J}_{\rho\sigma}$	$\mathcal{O}_{8,HDHW}$	$i\delta_{IJ}(H^{\dagger}H)(D^{\mu}H^{\dagger}\tau^{I}D^{\nu}H)W^{J}_{\mu\nu}$
$\mathcal{O}_{8,DH ilde{W}2}$	$\delta_{IJ} \left(D^{\mu} H^{\dagger} D_{\mu} H \right) W^{\rho\sigma,I} \widetilde{W}^{J}_{\rho\sigma}$	$\mathcal{O}_{8,HDH ilde{W}}$	$i\delta_{IJ}(H^{\dagger}H)(D^{\mu}H^{\dagger}\tau^{I}D^{\nu}H)\widetilde{W}^{J}_{\mu\nu}$
$\mathcal{O}_{8,DHW3}$	$\epsilon_{IJK} \left(D^{\mu} H^{\dagger} \tau^{I} D^{\nu} H \right) W^{J}_{\mu\rho} W^{\rho,K}_{\nu}$	$\mathcal{O}_{8,HDHW2}$	$i \epsilon_{IJK} (H^{\dagger} \tau^{I} H) (D^{\mu} H^{\dagger} \tau^{J} D^{\nu} H) W^{K}_{\mu\nu}$
$\mathcal{O}_{8,DH ilde{W}3a}$	$\epsilon_{IJK} \left(D^{\mu} H^{\dagger} \tau^{I} D^{\nu} H \right) \left(W^{J}_{\mu\rho} \widetilde{W}^{\rho,K}_{\nu} - \widetilde{W}^{J}_{\mu\rho} W^{\rho,K}_{\nu} \right)$	$\mathcal{O}_{8,HDH ilde{W}2}$	$i \epsilon_{IJK} (H^{\dagger} \tau^{I} H) (D^{\mu} H^{\dagger} \tau^{J} D^{\nu} H) \widetilde{W}_{\mu\nu}^{K}$

a subset of the bosonic operators at dim-8....

What do these operators actually do?

Change field strength normalization/inputs

Modify existing vertices

h ----

ex.) $(H^{\dagger}H) \square (H^{\dagger}H)$

ex.) $(H^{\dagger}H) W^{a}_{\mu\nu} W^{a,\mu\nu}$

New multi-particle interactions

 $(\bar{\psi}\psi)^2$ ex.)

Punchline of this talk

Its possible to reorganize SMEFT operators (= find a basis), where 2 and 3-particle interactions are sensitive to the minimal number of operators

Punchline of this talk

Its possible to reorganize SMEFT operators (= find a basis), where 2 and 3-particle interactions are sensitive to the minimal number of operators

Punchline of this talk

Its possible to reorganize SMEFT operators (= find a basis), where 2 and 3-particle interactions are sensitive to the minimal number of operators

With fewer operators around, can actually do complete $1/\Lambda^4$ calculations for certain processes.

Use those processes as simple laboratories for 'truncation error studies'

Or, to answer questions posed:

Q: Is it phenomenologically viable to go beyond dimension-6?

For resonant (h/W/Z/t) phenomenology involving 2- and 3point vertices, yes

Q: Does it make a difference?

Absolutely, especially when applied to loop-level SM processes

First hint: Misiak et al 1812.11513

Fully exploiting IBP and EOM redundancies, the only SMEFT operator types that contribute to bosonic 2-pt interactions are:

 H^n , $H^n X^2$, $D^2 H^n$

First hint: Misiak et al 1812.11513

. . .

Fully exploiting IBP and EOM redundancies, the only SMEFT operator types that contribute to bosonic 2-pt interactions are:

 H^n , $H^n X^2$, $D^2 H^n$

Why not e.g. D^4H^4 ? $(DH \sim \partial h + igAv + igAh)$

- $(DH^{\dagger})(DH)(DH^{\dagger})(DH)$? too many fields
- $(D_{\{\mu\nu\}}H^{\dagger}D_{\{\mu\nu\}}H)(H^{\dagger}H)$? via IBP and EOM, reduces to operators with 2 derivs + operators with > 2 fields

Similar arguments can be made for operators with field strengths, more derivatives

First hint: Misiak et al 1812.11513

Fully exploiting IBP and EOM redundancies, the only SMEFT operator types that contribute to bosonic 2-pt interactions are:

 H^n , $H^n X^2$, $D^2 H^n$

Bosonic kinetic piece defined by two functions:

$$\begin{split} h(H)(D_{\mu}H^{\dagger}D_{\mu}H), \ g_{AB}(H)\mathcal{W}^{A}_{\mu\nu}\mathcal{W}^{B\mu\nu} \\ \mathcal{W}^{A} = \left(W^{1}, W^{2}, W^{3}, B\right) \end{split}$$

this choice defines a basis

Even better:

Number of H^n , $H^n X^2$, $D^2 H^n$ type operators ~ doesn't change with mass dimension

	Mass Dimension					
Field space connection	6	8	10	12	14	
$h_{IJ}(\phi)(D_{\mu}\phi)^{I}(D^{\mu}\phi)^{J}$	2	2	2	2	2	
$g_{AB}(\phi)\mathcal{W}^{A}_{\mu u}\mathcal{W}^{B,\mu u}$	3	4	4	4	4	

Consequence of group theory + Bose statistics

contributions to h_{IJ}

$$Q_{HD}^{(8+2n)} = \left(H^{\dagger}H\right)^{n+2} \left(D_{\mu}H\right)^{\dagger} \left(D^{\mu}H\right)$$
$$Q_{H,D2}^{(8+2n)} = \left(H^{\dagger}H\right)^{n+1} \left(H^{\dagger}\sigma_{a}H\right) \left(D_{\mu}H\right)^{\dagger} \sigma^{a} \left(D^{\mu}H\right)$$

Example operator counting:

$$(H^{\dagger}H)^{n} W_{L}^{2} \text{ ignore Lorentz, focus on SU(2)}_{W} \text{ reps.}$$

$$H = (1/2) \therefore H^{n} = (n/2) \qquad W_{L}^{2} = (0 \oplus 2) \text{ enforced by Bose symm.}$$

$$H^{\dagger} = (1/2) \therefore (H^{\dagger})^{n} = (n/2) \qquad (H^{\dagger}H)^{n} = (0 \oplus 1 \oplus 2 \oplus ...n) \otimes W_{L}^{2} = (0 \oplus 2) = 2 \text{ invariants}$$

 $[+1 \text{ for } B_L^2 \text{ and } +1 \text{ for } W_L B_L = 4]$

To get SU(2)_W **2**, need \geq 4 Higgses \rightarrow operator dimension \geq 8

Example operator counting:

$$(H^{\dagger}H)^{n} W_{L}^{2} \text{ ignore Lorentz, focus on SU(2)}_{W} \text{ reps.}$$

$$H = (1/2) \therefore H^{n} = (n/2) \qquad W_{L}^{2} = (0 \oplus 2) \text{ enforced by Bose symm.}$$

$$H^{\dagger} = (1/2) \therefore (H^{\dagger})^{n} = (n/2) \qquad (H^{\dagger}H)^{n} = (0 \oplus 1 \oplus 2 \oplus \dots n) \otimes W_{L}^{2} = (0 \oplus 2) = 2 \text{ invariants}$$

 $[+1 \text{ for } B_L^2 \text{ and } +1 \text{ for } W_L B_L = 4]$

To get SU(2)_W **2**, need \geq 4 Higgses \rightarrow operator dimension \geq 8

contributions to g_{AB}

$$Q_{HB}^{(6+2n)} = (H^{\dagger}H)^{n+1}B^{\mu\nu} B_{\mu\nu},$$

$$Q_{HW}^{(6+2n)} = (H^{\dagger}H)^{n+1}W_{a}^{\mu\nu} W_{\mu\nu}^{a},$$

$$Q_{HWB}^{(6+2n)} = (H^{\dagger}H)^{n}(H^{\dagger}\sigma^{a}H)W_{a}^{\mu\nu} B_{\mu\nu},$$

$$Q_{HWB}^{(8+2n)} = (H^{\dagger}H)^{n}(H^{\dagger}\sigma^{a}H)(H^{\dagger}\sigma^{b}H)W_{a}^{\mu\nu} W_{b,\mu\nu},$$

<u>Convenient to work with real fields:</u> $H(\phi_I) = \frac{1}{\sqrt{2}} \begin{bmatrix} \phi_2 + i\phi_1 \\ \phi_4 - i\phi_3 \end{bmatrix}$

Can rewrite scalar quadratic form as a metric in field space $h_{IJ}(\phi) \left(D_{\mu} \phi \right)^{T} \left(D_{\mu} \phi \right)^{T}$

$$h_{IJ} = \left[1 + \phi^2 \frac{C_{H\square}^{(6)}}{2} + \sum_{n=0}^{\infty} \left(\frac{\phi^2}{2}\right)^{n+2} \left(\frac{C_{HD}^{(8+2n)}}{2n} - \frac{C_{H,D2}^{(8+2n)}}{2n}\right)\right] \delta_{IJ} + \frac{\Gamma_{A,J}^{I} \phi_K \Gamma_{A,L}^{K} \phi^L}{2} \left(\frac{C_{HD}^{(6)}}{2} + \sum_{n=0}^{\infty} \left(\frac{\phi^2}{2}\right)^{n+1} C_{H,D2}^{(8+2n)}\right)$$

$$SU(2) \text{ generators for real fields}$$

SM, g_{AB} , $h_{IJ} = 1$. Including higher dimension operators, field space metrics become curved \rightarrow 'geometric' SMEFT or `geoSMEFT'

[Burgess, Lee, Trott '10, Alonso, Jenkins, Manohar '15, '16, Helset, Paraskevas, Trott 1803.08001]

What about 3-pt interactions? Similar story

- 3 fields only, Lorentz invariance
- non-Higgs derivatives increase field count or introduce momentum

 $D\psi, D\bar{\psi}, DX \rightarrow 2$ fields or 1 field + 1 momentum $DH \rightarrow 1$ or 2 fields or 1 field + 1 momentum

What about 3-pt interactions? Similar story

- 3 fields only, Lorentz invariance
- non-Higgs derivatives increase field count or introduce momentum

 $D\psi, D\overline{\psi}, DX \rightarrow 2$ fields or 1 field + 1 momentum $DH \rightarrow 1$ or 2 fields or 1 field + 1 momentum

But **all** momentum dot products reduce to masses once we impose momentum conservation

Just changes coefficient of $H\bar{\psi}\psi$: <u>not</u> a new operator structure
What about 3-pt interactions? Similar story

- 3 fields only, Lorentz invariance
- non-Higgs derivatives increase field count or introduce momentum

 $D\psi, D\overline{\psi}, DX \rightarrow 2$ fields or 1 field + 1 momentum $DH \rightarrow 1$ or 2 fields or 1 field + 1 momentum

But **all** momentum dot products reduce to masses once we impose momentum conservation

Just changes coefficient of $H\bar{\psi}\psi$: <u>not</u> a new operator structure True whenever $D\psi, D\bar{\psi}, DX, DH$ = momentum

What about 3-pt interactions? Similar story

- 3 fields only, Lorentz invariance
- non-Higgs derivatives increase field count or introduce momentum

 $D\psi, D\overline{\psi}, DX \rightarrow 2$ fields or 1 field + 1 momentum $DH \rightarrow 1$ or 2 fields or 1 field + 1 momentum

But **all** momentum dot products reduce to masses once we impose momentum conservation

Just changes coefficient of $H\bar{\psi}\psi$: <u>not</u> a new operator structure True whenever $D\psi, D\bar{\psi}, DX, DH$ = momentum

What about 3-pt interactions? Similar story

Net result: limited options

- $DF_1 DF_2 DF_3 DF_4$ X
- $(DX)^2 H^2$ ×
- $H^2 X^3$ \checkmark
- $(D\bar{\psi})\psi(DH)H$ \times
- $\bar{\psi}\psi(DH)H^3$ <

exactly the 'special 3-body kinematics' story from on-shell amplitude-land

Allowed 3-pt structures:

As before, # operators small and remains ~fixed for increasing mass dimension

Field space connection	6	8	10	12	14
$k_{IJA}(\phi)(D^{\mu}\phi)^{I}(D^{\nu}\phi)^{J}\mathcal{W}^{A}_{\mu\nu}$	0	3	4	4	4
$f_{ABC}(\phi)\mathcal{W}^{A}_{\mu u}\mathcal{W}^{B, u ho}\mathcal{W}^{C,\mu}_{ ho}$	1	2	2	2	2
$Y_{pr}^{u}(\phi)\bar{Q}u+$ h.c.	$2 N_f^2$	$2N_f^2$	$2 N_f^2$	$2 N_f^2$	$2 N_f^2$
$Y^d_{pr}(\phi) \bar{Q}d + ext{h.c.}$	$2N_f^2$	$2N_f^2$	$2N_f^2$	$2N_f^2$	$2 N_f^2$
$Y_{pr}^e(\phi)\overline{L}e+$ h.c.	$2 N_f^2$	$2N_{f}^{2}$	$2N_f^2$	$2 N_f^2$	$2 N_f^2$
$d_A^{e,pr}(\phi) \bar{L} \sigma_{\mu\nu} e \mathcal{W}_A^{\mu\nu} + \text{h.c.}$	$4N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$
$d_A^{u,pr}(\phi)\bar{Q}\sigma_{\mu\nu}u\mathcal{W}_A^{\mu\nu}+\text{h.c.}$	$4 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_f^2$
$d_A^{d,pr}(\phi)\bar{Q}\sigma_{\mu\nu}d\mathcal{W}_A^{\mu\nu}$ + h.c.	$4N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$
$L^{\psi_R}_{pr,A}(\phi)(D^{\mu}\phi)^J(\bar{\psi}_{p,R}\gamma_{\mu}\sigma_A\psi_{r,R})$	N_f^2	N_f^2	N_f^2	N_f^2	N_f^2
$\hat{L}_{pr,A}^{\psi_L}(\phi)(D^{\mu}\phi)^J(\bar{\psi}_{p,L}\gamma_{\mu}\sigma_A\psi_{r,L})$	$2N_f^2$	$4 N_f^2$	$4N_f^2$	$4N_f^2$	$4N_f^2$

Mass Dimension

Example: $L_{I,A}(\phi)\bar{\psi}_1\gamma^{\mu}\tau_A\psi_2(D_{\mu}\phi)^I$

contributing operators

$$\begin{array}{l} \mathcal{Q}_{H\psi}^{1,(6+2n)} = (H^{\dagger}H)^{n}H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\psi_{r}, \\ \mathcal{Q}_{H\psi}^{3,(6+2n)} = (H^{\dagger}H)^{n}H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}_{a}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\sigma_{a}\psi_{r}, \\ \mathcal{Q}_{H\psi}^{2,(8+2n)} = (H^{\dagger}H)^{n}(H^{\dagger}\sigma_{a}H)H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\sigma_{a}\psi_{r}, \\ \mathcal{Q}_{H\psi}^{2,(8+2n)} = (H^{\dagger}H)^{n}(H^{\dagger}\sigma_{c}H)H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}_{b}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\sigma_{a}\psi_{r}, \\ \mathcal{Q}_{H\psi}^{6,(8+2n)} = \epsilon_{bc}^{a}(H^{\dagger}H)^{n}(H^{\dagger}\sigma_{c}H)H^{\dagger}\overset{\leftrightarrow}{i}\overrightarrow{D}_{b}^{\mu}H\overline{\psi}_{p}\gamma_{\mu}\sigma_{a}\psi_{r}. \end{array} \right\} \begin{array}{c} \text{higher dim. versions} \\ \text{of ``class 7''} \\ \text{operators} \\ \text{operators} \\ \text{operators} \\ \text{from } d \geq 8 \end{array}$$

compact form for connection:

$$\begin{split} L_{J,A}^{\psi,pr} &= -(\phi \gamma_4)_J \delta_{A4} \sum_{n=0}^{\infty} C_{H\psi}^{1,(6+2n)} \left(\frac{\phi^2}{2}\right)^n - (\phi \gamma_A)_J (1 - \delta_{A4}) \sum_{n=0}^{\infty} C_{H\psi_L}^{3,(6+2n)} \left(\frac{\phi^2}{2}\right)^n \\ &+ \frac{1}{2} (\phi \gamma_4)_J (1 - \delta_{A4}) \left(\phi_K \Gamma_{A,L}^K \phi^L\right) \sum_{n=0}^{\infty} C_{H\psi_L}^{2,(8+2n)} \left(\frac{\phi^2}{2}\right)^n \\ &+ \frac{\epsilon_{BC}^A}{2} (\phi \gamma_B)_J \left(\phi_K \Gamma_{C,L}^K \phi^L\right) \sum_{n=0}^{\infty} C_{H\psi_L}^{\epsilon,(8+2n)} \left(\frac{\phi^2}{2}\right)^n \end{split}$$

4-pt interactions: can we go 'full metric'?

Key part of 2- and 3-pt result is that special kinematics forbade $D \sim \text{momentum}$

No longer true at \geq 4-pt interactions. Operators can depend on $\mathcal{O} \sim s^n t^m$

 \longrightarrow infinite set of higher derivative operators can contribute

geoSMEFT at work:

SMEFT phenomenology for processes involving 2, 3-pt interactions now doable to any order in v^2/Λ^2

Specifically, $\mathcal{O}(1/\Lambda^4)$ easily calculated for a large set of processes

geoSMEFT at work:

SMEFT phenomenology for processes involving 2, 3-pt interactions now doable to any order in v^2/Λ^2

Specifically, $\mathcal{O}(1/\Lambda^4)$ easily calculated for a large set of processes

geoSMEFT at work:

SMEFT phenomenology for processes involving 2, 3-pt interactions now doable to any order in v^2/Λ^2

Specifically, $\mathcal{O}(1/\Lambda^4)$ easily calculated for a large set of processes

What can we do with this? `EW inputs'

Bosonic kinetic terms used to define the gauge boson mass basis

 $W^3_\mu, B_\mu \longrightarrow A_\mu, Z_\mu$

& couplings to mass eigenstates define: $e, g_Z, \sin^2 \theta_Z$ $D_{\mu}\psi = \left[\partial_{\mu} + i\bar{g}_3 \,\mathcal{G}^{\mu}_{\mathcal{A}} \,T^{\mathcal{A}} + i\frac{\bar{g}_2}{\sqrt{2}} \left(\mathcal{W}^+ \,T^+ + \mathcal{W}^- \,T^-\right) + i\bar{g}_Z \left(T_3 - s^2_{\theta_Z} Q_{\psi}\right) \mathcal{Z}^{\mu} + i \,Q_{\psi} \,\bar{e} \,\mathcal{A}^{\mu}\right] \psi.$

SM: $e, g_Z, \sin^2 \theta_Z =$ functions of g, g' alone SMEFT: relation altered by operators that feed into kinetic terms:

ex.)
$$C^{(6)}_{HW} H^{\dagger} H \, W^{A}_{\mu
u} W^{A,\mu
u}$$

 $\therefore e, g_Z, \sin^2 \theta_Z = \text{function of } g, g', C_i^{(n)}$ coefficients

'Universal effect', since all occurrences of e, g_Z , $\sin^2 \theta_Z$ now carry coefficient dependence

What can we do with this? `EW inputs'

With geoSMEFT setup, can set EW inputs to <u>all orders</u>:

 $e, g_Z, \sin^2 \theta_Z \longrightarrow \text{functions of } g, g', h_{IJ}, g_{AB}$

$$\bar{g}_{2} = g_{2} \sqrt{g}^{11} = g_{2} \sqrt{g}^{22},$$

$$\bar{g}_{Z} = \frac{g_{2}}{c_{\theta_{Z}}^{2}} \left(c_{\bar{\theta}} \sqrt{g}^{33} - s_{\bar{\theta}} \sqrt{g}^{34} \right) = \frac{g_{1}}{s_{\theta_{Z}}^{2}} \left(s_{\bar{\theta}} \sqrt{g}^{44} - c_{\bar{\theta}} \sqrt{g}^{34} \right),$$

$$\bar{e} = g_{2} \left(s_{\bar{\theta}} \sqrt{g}^{33} + c_{\bar{\theta}} \sqrt{g}^{34} \right) = g_{1} \left(c_{\bar{\theta}} \sqrt{g}^{44} + s_{\bar{\theta}} \sqrt{g}^{34} \right),$$

$$couplings$$

$$\bar{m}_W^2 = \frac{\bar{g}_2^2}{4} \sqrt{h_{11}}^2 \bar{v}_T^2, \qquad \bar{m}_Z^2 = \frac{\bar{g}_Z^2}{4} \sqrt{h_{33}}^2 \bar{v}_T^2 \qquad \bar{m}_A^2 = 0.$$

[Helset, Martin, Trott 2001.01453]

e.g)
$$h \to \gamma\gamma$$

 $\langle hA^{\mu\nu}A_{\mu\nu}\rangle \mathcal{A}_{SM}^{h\gamma\gamma} - \langle hA^{\mu\nu}A_{\mu\nu}\rangle \frac{\sqrt{h}^{44}}{4} \left[\langle \frac{\delta g_{33}(\phi)}{\delta \phi_4} \rangle \frac{\overline{e}^2}{g_2^2} + 2 \langle \frac{\delta g_{34}(\phi)}{\delta \phi_4} \rangle \frac{\overline{e}^2}{g_1g_2} + \langle \frac{\delta g_{44}(\phi)}{\delta \phi_4} \rangle \frac{\overline{e}^2}{g_1^2} \right]$
 H normalization $f_{expand} g_{33}(\phi) \mathcal{W}_{\mu\nu}^3 \mathcal{W}^{3\mu\nu}$ to get linear h fiece

e.g)
$$h \to \gamma\gamma$$

 $\langle hA^{\mu\nu}A_{\mu\nu}\rangle \mathcal{A}_{SM}^{h\gamma\gamma} - \langle hA^{\mu\nu}A_{\mu\nu}\rangle \frac{\sqrt{h}^{44}}{4} \left[\langle \frac{\delta g_{33}(\phi)}{\delta \phi_4} \rangle \frac{\overline{e}^2}{g_2^2} + 2 \langle \frac{\delta g_{34}(\phi)}{\delta \phi_4} \rangle \frac{\overline{e}^2}{g_1g_2} + \langle \frac{\delta g_{44}(\phi)}{\delta \phi_4} \rangle \frac{\overline{e}^2}{g_1^2} \right]$
H normalization expand $g_{33}(\phi) \mathcal{W}_{\mu\nu}^3 \mathcal{W}^{3\mu\nu}$ to get linear h piece

application: expanding, can now calculate <u>full</u> $1/\Lambda^4$ corrections. With that, we can:

- check how well (dim-6)² captures the effect
- treat $1/\Lambda^4$ as uncertainty and feed into fits on dim-6 coefficients
- think about how to pin down new coefficients with future measurements

e.g)
$$h \rightarrow \gamma \gamma$$

defining: $\langle h | \gamma \gamma \rangle_{\mathscr{Z}^{(6)}} = \left[\frac{g_2^2 \tilde{C}_{HB}^{(6)} + g_1^2 \tilde{C}_{HW}^{(6)} - g_1 g_2 \tilde{C}_{HWB}^{(6)}}{(g_1^2 + g_2^2) \bar{v}_T} \right]$

(dim-6)² estimate:
$$\left|\mathscr{A}_{SM}^{h\gamma\gamma}\right|^{2} + 2 \operatorname{Re}\left(\mathscr{A}_{SM}^{h\gamma\gamma}\right) \langle h | \gamma\gamma \rangle_{\mathscr{L}^{(6)}} + \langle h | \gamma\gamma \rangle_{\mathscr{L}^{(6)}}^{2}$$

e.g)
$$h \to \gamma \gamma$$

defining: $\langle h | \gamma \gamma \rangle_{\mathscr{Z}^{(6)}} = \left[\frac{g_2^2 \tilde{C}_{HB}^{(6)} + g_1^2 \tilde{C}_{HW}^{(6)} - g_1 g_2 \tilde{C}_{HWB}^{(6)}}{(g_1^2 + g_2^2) \bar{v}_T} \right]$

(dim-6)² estimate:
$$\left|\mathscr{A}_{SM}^{h\gamma\gamma}\right|^{2} + 2 \operatorname{Re}\left(\mathscr{A}_{SM}^{h\gamma\gamma}\right) \langle h | \gamma\gamma \rangle_{\mathscr{L}^{(6)}} + \langle h | \gamma\gamma \rangle_{\mathscr{L}^{(6)}}^{2}$$

Full $\mathcal{O}(1/\Lambda^4)$ result:

$$\mathcal{A}_{SM}^{h\gamma\gamma}\Big|^{2} + 2\operatorname{Re}\left(\mathcal{A}_{SM}^{h\gamma\gamma}\right)\left(1 + \left\langle\sqrt{h}^{44}\right\rangle_{\mathscr{L}^{(6)}}\right)\langle h|\gamma\gamma\rangle_{\mathscr{L}^{(6)}} + \left(1 + 4\bar{\nu}_{T}\operatorname{Re}\left(\mathcal{A}_{SM}^{h\gamma\gamma}\right)\right)\left(\langle h|\gamma\gamma\rangle_{\mathscr{L}^{(6)}}\right)^{2} + 2\operatorname{Re}\left(\mathcal{A}_{SM}^{h\gamma\gamma}\right)\left[\frac{g_{2}^{2}\tilde{C}_{HB}^{(8)} + g_{1}^{2}\left(\tilde{C}_{HW}^{(8)} - \tilde{C}_{HW,2}^{(8)}\right) - g_{1}g_{2}\tilde{C}_{HWB}^{(8)}}{\left(g_{1}^{2} + g_{2}^{2}\right)\bar{\nu}_{T}}\right]$$

e.g) $h \rightarrow \gamma \gamma$

At $1/\Lambda^4$, only involves $\mathcal{O}(10)$ operators Significant differences between full and (dim6)² result!

...even $\left(\langle h | \gamma \gamma \rangle_{\mathscr{L}^{(6)}} \right)^2$ captured incorrectly by just (dim-6)²

Full $\mathcal{O}(1/\Lambda^4)$ result:

$$\mathcal{A}_{SM}^{h\gamma\gamma}\Big|^{2} + 2\operatorname{Re}\left(\mathcal{A}_{SM}^{h\gamma\gamma}\right)\left(1 + \left\langle\sqrt{h}^{44}\right\rangle_{\mathscr{L}^{(6)}}\right)\langle h|\gamma\gamma\rangle_{\mathscr{L}^{(6)}} + \left(1 + 4\bar{v}_{T}\operatorname{Re}\left(\mathcal{A}_{SM}^{h\gamma\gamma}\right)\right)\left(\langle h|\gamma\gamma\rangle_{\mathscr{L}^{(6)}}\right)^{2} + 2\operatorname{Re}\left(\mathcal{A}_{SM}^{h\gamma\gamma}\right)\left[\frac{g_{2}^{2}\tilde{C}_{HB}^{(8)} + g_{1}^{2}\left(\tilde{C}_{HW}^{(8)} - \tilde{C}_{HW,2}^{(8)}\right) - g_{1}g_{2}\tilde{C}_{HWB}^{(8)}}{\left(g_{1}^{2} + g_{2}^{2}\right)\bar{v}_{T}}\right]$$

e.g) $h \rightarrow \gamma \gamma$

Quantify effect by randomly drawing coefficients and comparing dim-6, (dim-6)² and full $1/\Lambda^4$ result

How do you randomly draw coefficients?

For weakly coupled UV theories, well known classification of operators up to dim-8 into 'tree' and 'loop' level

[Arzt'93], [Einhorn, Wudka '13], [Craig et al '20]

	Tree	Loop
<u>Dim 6</u>	$\bar{\psi}\psi H^2 D, H^4 D^2, \psi^2 H^3, \cdots$	H^2X^2, X^3, \cdots
<u>Dim 8</u>	$H^4 X^2, \psi^4 X, \psi^5 H \cdots$ $\bar{\psi} \psi H^4 D$	H^2X^3, X^4, \cdots

 $\psi, \bar{\psi}$ = any fermion, H = Higgs, X = any field strength, D = covariant derivative

How do you randomly draw coefficients?

For weakly coupled UV theories, well known classification of operators up to dim-8 into 'tree' and 'loop' level

[Arzt'93], [Einhorn, Wudka '13], [Craig et al '20]

	Tree	Loop
<u>Dim 6</u>	$\bar{\psi}\psi H^2 D, H^4 D^2, \psi^2 H^3, \cdots$	H^2X^2, X^3, \cdots
<u>Dim 8</u>	$H^4 X^2, \psi^4 X, \psi^5 H \cdots$ $\bar{\psi} \psi H^4 D$	$H^2 X^3, X^4, \cdots$ impact $h \to \gamma \gamma, h \to Z \gamma$

 $\psi, \bar{\psi}$ = any fermion, H = Higgs, X = any field strength, D = covariant derivative

How do you randomly draw coefficients?

For weakly coupled UV theories, well known classification of operators up to dim-8 into 'tree' and 'loop' level

[[]Arzt'93], [Einhorn, Wudka '13], [Craig et al '20]

 $\psi, \bar{\psi}$ = any fermion, H = Higgs, X = any field strength, D = covariant derivative

e.g) $h \rightarrow \gamma \gamma$

Quantify effect by randomly drawing coefficients and comparing dim-6, (dim-6)² and full $1/\Lambda^4$ result

Tree level operators: draw coefficients at random from a gaussian with **mean 0, width 1**

Loop level operators: draw coefficients at random from a gaussian with **mean 0, width 0.01**

e.g) $h \rightarrow \gamma \gamma$

Contours show range of effects once full $1/\Lambda^4$ effects are included (for fixed $1/\Lambda^2$, (dim-6)² result)

e.g) $h \rightarrow \gamma \gamma$

For fixed deviation, e.g. $\delta(h \to \gamma \gamma) = 0.2$

e.g) $h \rightarrow \gamma \gamma$

For fixed deviation, e.g. $\delta(h \to \gamma \gamma) = 0.2$

Λ interpretation
 assuming interference
 only: ~2.3 TeV

e.g) $h \rightarrow \gamma \gamma$

For fixed deviation, e.g. $\delta(h \to \gamma \gamma) = 0.2$

Λ interpretation
 assuming interference
 only: ~2.3 TeV

 Λ interpretation with full : [0.5 - 2.7 TeV]

e.g) $h \rightarrow \gamma \gamma$

Why such a large effect?

Following tree/loop classification, all operators at dim-6 are loop-level

$$\langle h | \gamma \gamma \rangle_{to v^2/\Lambda^2} \sim 0.01 \left(\frac{C^{(6)}}{0.01}\right) \frac{v^2}{\Lambda^2}$$

Tree effects enter at dim-8

$$\langle h | \gamma \gamma \rangle_{to v^4/\Lambda^4} \sim \left(\frac{C^{(8)}}{1.0}\right) \frac{v^4}{\Lambda^4}$$

similar result for $h \to Z\gamma$

e.g) $h \rightarrow \gamma \gamma$

Why such a large effect?

Following tree/loop classification, all operators at dim-6 are loop-level

$$\langle h | \gamma \gamma \rangle_{to v^2/\Lambda^2} \sim 0.01 \left(\frac{C^{(6)}}{0.01} \right) \frac{v^2}{\Lambda^2}$$

Tree effects enter at dim-8

$$\langle h | \gamma \gamma \rangle_{to v^4/\Lambda^4} \sim \left(\frac{C^{(8)}}{1.0}\right) \frac{v^4}{\Lambda^4}$$

effects can compete despite higher order in Λ

similar result for $h \to Z\gamma$

e.g.) $Z \rightarrow \ell^+ \ell^-$

Now tree-level operators present for both dim-6 and dim-8

$$\langle Z | \ell \ell \rangle_{to v^2/\Lambda^2} \sim \left(\frac{C^{(6)}}{1.0}\right) \frac{v^2}{\Lambda^2}$$

$$\langle Z | \ell \ell \rangle_{to v^4 / \Lambda^4} \sim \left(\frac{C^{(8)}}{1.0} \right) \frac{v^4}{\Lambda^4}$$

smaller impact, but still present, especially if Λ is small

Working to $1/\Lambda^4$: top down

Try a specific UV model: kinetically mixed U(1)

$$\Delta \mathscr{L} = -\frac{1}{4} K_{\mu\nu} K^{\mu\nu} + \frac{1}{2} m_K^2 K_{\mu} K^{\mu} - \frac{k}{2} B^{\mu\nu} K_{\mu\nu}$$

integrate out to dim-8 (tree level only)

$$\Delta \mathscr{L} = -\frac{k^2}{2m_K^2} j_\mu j^\mu + \frac{k^2 - k^4}{2m_K^4} \left(\partial^2 j_\mu\right) j^\mu + \frac{g_1^2 k^4}{4m_K^4} \left(H^\dagger H\right) j_\mu j^\mu$$

where

$$j_{\mu} = \sum_{\psi} \left(-g_1 \mathbf{y}_{\psi} \right) \bar{\psi} \gamma_{\mu} \psi + \left(-\frac{1}{2} g_1 \right) H^{\dagger} i D_{\mu} H$$

Working to $1/\Lambda^4$: top down

dim-6

	H^4D^2	
$\frac{H^2\psi^2D}{2}$	$C_{H\square}^{(6)} \mid -\frac{g_1^2 k^2}{8m_{-1}^2}$	
$\frac{C_{H\ell}^{1,(6)} - \frac{y_{\ell}g_1^2}{2m_K^2}b_1}{(1-y_{\ell})^2}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$C_{He}^{(6)} \mid -\frac{y_e g_1^2}{2m_K^2} b_1$		
$C_{Hq}^{1,(6)} \mid -\frac{y_q g_1^2}{2m_K^2} b_1$	$\frac{\psi^4:(\bar{L}L)(\bar{L}L)}{(\bar{L}L)}$	
$C_{H_{u}}^{(6)} \mid -\frac{y_{u}g_{1}^{2}}{2m^{2}}b_{1}$	$C_{\ell\ell}^{(6)} \mid -\frac{1}{8} \frac{g_1^2 \kappa^2}{m_K^2}$	
$\frac{114}{C_{111}^{(6)}} - \frac{y_d g_1^2}{2 g_1^2} b_1$	$C_{qq}^{1,(6)} \mid -\frac{1}{72} \frac{g_1^2 k^2}{m_K^2}$	
$Ha \mid 2m_K^2$	$C_{\ell q}^{1,(6)} \mid \frac{1}{12} \frac{g_1^2 k^2}{m_K^2}$	

dim-8

$H^4\psi^2 D$	
$C_{H\ell}^{1,(8)} \left \begin{array}{c} \frac{\mathbf{y}_{\ell}g_{1}^{4}}{4m_{K}^{4}}k^{4} - \frac{g_{1}^{2}\mathbf{y}_{\ell}}{m_{K}^{4}}(k^{2} - k^{4})(2\lambda + \frac{g_{1}^{2} + g_{2}^{2}}{4}) \end{array} \right $	
$C_{He}^{1,(8)} \left \begin{array}{c} \frac{y_e g_1^4}{4m_K^4} k^4 - \frac{g_1^2y_e}{m_K^4} (k^2 - k^4) (2\lambda + \frac{g_1^2 + g_2^2}{4}) \end{array} \right $	H^6D^2
$\boxed{C_{Hq}^{1,(8)} \mid \frac{y_q g_1^4}{4 m_K^4} k^4 - \frac{g_1^2 y_q}{m_K^4} (k^2 - k^4) (2\lambda + \frac{g_1^2 + g_2^2}{4})}$	$C_{H,D2}^{(8)} \mid \frac{g_1^4 k^4}{8 m_K^4} - \frac{g_1^2 g_2^2}{2 m_K^4} (k^2 - k^4)$
$C_{Hu}^{1,(8)} \mid \frac{y_u g_1^4}{4 m_K^4} k^4 - \frac{g_1^2 y_u}{m_K^4} (k^2 - k^4) (2\lambda + \frac{g_1^2 + g_2^2}{4})$	$C_{HD}^{(8)} \left \begin{array}{c} \frac{3g_1^4k^4}{16m_K^4} - \frac{g_1^2g_2^2}{2m_K^4}(k^2 - k^4) \right.$
$\boxed{C_{Hd}^{1,(8)} \mid \frac{y_d g_1^4}{4m_K^4}k^4 - \frac{g_1^2y_d}{m_K^4}(k^2 - k^4)(2\lambda + \frac{g_1^2 + g_2^2}{4})}$	X^2H^4
$C_{H\ell}^{2,(8)} \qquad -\frac{g_1^2 g_2^2}{16 m_K^4} (k^2 - k^4)$	$C_{HB}^{(8)} - \frac{g_1^4}{16 m_K^4} (k^2 - k^4)$
$C_{Hq}^{2,(8)} \qquad -\frac{g_1^2 g_2^2}{16 m_K^4} (k^2 - k^4)$	$\begin{array}{ c c c c c }\hline C^{(8)}_{HW} & & \frac{g_1^2 g_2^2}{16 m_K^4} (k^2 - k^4) \\ \hline \end{array}$
$C_{H\ell}^{3,(8)} \qquad \qquad -\frac{g_1^2 g_2^2}{16 m_K^4} (k^2 - k^4)$	
$C_{Hq}^{3,(8)} \qquad -\frac{g_1^2 g_2^2}{16 m_K^4} (k^2 - k^4)$	

No operators that impact $h \rightarrow \gamma \gamma$

. . .

operators impacting $h \rightarrow \gamma \gamma$ present

 \therefore at dim-6 level, no effect, while there is an effect if we go to full $1/\Lambda^4$

Working to $1/\Lambda^4$: top down

Said differently:

If restricted to $1/\Lambda^2$ level, appears like no constraint from $h \to \gamma \gamma$

But done fully at $1/\Lambda^4$, constraint is there

U(1) model constraints, α scheme

So where does this leave us?

Restricted to 2- and 3-pt resonant phenomenology, can think about $1/\Lambda^4$ effects (and beyond!) without introducing a flood of new operators

- geoSMEFT framework: basis where 2 and 3 particle vertices sensitive to a minimal # of operators, # ~ constant with mass dimension
- Can study select processes to $1/\Lambda^4$, use them to form guidelines for how to include truncation error more generally in SMEFT studies

Find (dim-6)² is not a great proxy for full $1/\Lambda^4$ effects, especially for loop-level SM processes

So where does this leave us?

Lots to do:

- Expand the 'laboratory': more $1 \rightarrow 2, 2 \rightarrow 2$ processes
- Incorporate into dim-6 coefficient fits
- Combine with effects from higher loop (NLO) order
- How to pin down new coefficients, rather than treat them as nuisance parameters?

Backup

Redo classic SMEFT LEP1 analysis to $\mathcal{O}(1/\Lambda^4)$

scanning dim-8 coefficients

$g_{\mathrm{eff,pr}}^{\mathcal{Z},\psi}$	=	$\frac{\bar{g}_Z}{2} \left[(2s_{\theta_Z}^2 Q_{\psi} - \sigma_3) \delta_{pr} + \bar{v}_T \langle L_{3,4}^{\psi,pr} \rangle + \sigma_3 \bar{v}_T \langle L_{3,3}^{\psi,pr} \rangle \right]$
	=	$\langle g_{\mathrm{SM,pr}}^{\mathcal{Z},\psi} \rangle + \langle g_{\mathrm{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\mathcal{O}(v^2/\Lambda^2)} + \langle g_{\mathrm{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\mathcal{O}(v^4/\Lambda^4)} + \cdots$
		A

SMEFT corrections in $\{\hat{m}_W, \hat{m}_Z, \hat{G}_F\}/\{\hat{\alpha}, \hat{m}_Z, \hat{G}_F\}$ scheme				
$\mathcal{O}(rac{v^4}{\Lambda^4})$	$\langle g_{\mathrm{eff,pp}}^{\mathcal{Z},u_R} angle$	$\langle g_{ ext{eff,pp}}^{\mathcal{Z},d_R} angle$	$\langle g_{ ext{eff,pp}}^{\mathcal{Z},\ell_R} angle$	
$\langle g_{\mathrm{eff}}^{\mathcal{Z},\psi} angle^2$	14/5.5	-27/-11	-9.1/-3.6	
$\tilde{C}_{HB} C_{HWB}$	-0.21/0.39	0.10/-0.19	0.31/-0.58	
$ ilde{C}^2_{HD}$	0.28 / -0.026	-0.14/0.013	-0.42/0.040	
$ ilde{C}_{HD} ilde{C}_{H\psi}^{(6)}$	-0.83/-0.19	-0.83/-0.19	-0.83/-0.19	
$\tilde{C}_{HD}\tilde{C}_{HWB}$	0.59/-0.19	-0.29/0.097	-0.88/0.29	
$\tilde{C}_{HD}\langle g_{\mathrm{eff}}^{\mathcal{Z},\psi} \rangle$	4.0/0.50	4.0/0.50	4.0/0.50	
$(\tilde{C}_{H\psi}^{(6)})^2$	0.62/1.4	-1.2/-2.8	-0.42/-0.93	
$\tilde{C}_{HWB}\tilde{C}^{(6)}_{H\psi}$	-0.69/0.58	-0.69/0.58	-0.69/0.58	
$\tilde{C}_{H\psi}^{(6)} \langle g_{\text{eff}}^{\mathcal{Z},\psi} \rangle$	-6.7/-5.8	13/12	4.5/3.9	
$\tilde{C}_{HWB} \langle g_{\text{eff}}^{\mathcal{Z},\psi} \rangle$	3.7/0.26	3.7/0.26	3.7/0.26	
$\tilde{C}_{HW}C_{HWB}$	-0.21/0.39	0.10/-0.19	0.31/-0.58	
$ ilde{C}^{(8)}_{HD}$	-0.014/0.026	0.0069/-0.013	0.021/-0.040	
$ ilde{C}^{(8)}_{HD,2}$	-0.21/0.026	0.10/-0.013	0.31/-0.040	
$ ilde{C}_{H\psi}^{(8)}$	0.19/0.19	0.19/0.19	0.19/0.19	
$ ilde{C}_{HW,2}^{(8)}$	-0.38/0	0.19/0	0.58/0	
$ ilde{C}^{(8)}_{HWB}$	-0.10/0.19	0.051/-0.097	0.15/-0.29	
$\delta C^{(8)}$	-0.078/0.15	0.039/_0.075	0.12/-0.22	

What about G_F?

G_F involves more than quadratic terms:

However, since G_F derived at muon mass scale $(D \sim m_{\mu} \ll \Lambda)$ and SM term is from L⁴, # of higher dimensional contributions is dramatically reduced

$$C_{4\ell,2}^{(8+2n)}\left(H^{\dagger}H\right)^{1+n}\left(\bar{\ell}_{2}\gamma^{\mu}\sigma^{i}\ell_{2}\right)\left(\bar{\ell}_{1}\gamma_{\mu}\sigma_{i}\ell_{1}\right) \qquad iC_{4\ell,5}^{(8+2n)}\epsilon_{ijk}\left(H^{\dagger}H\right)^{n}\left(H^{\dagger}\sigma^{i}H\right)\left(\bar{\ell}_{2}\gamma^{\mu}\sigma_{j}\ell_{2}\right)\left(\bar{\ell}_{1}\gamma_{\mu}\sigma_{k}\ell_{1}\right)$$

All orders result is possible even for contact terms:

$$\mathscr{G}_{F}^{4pt} = \frac{1}{\bar{v}_{T}^{2}} \left(\tilde{C}_{\mu c c \mu}^{(6)} + \tilde{C}_{\mu \mu \mu e}^{(6)} + \frac{\tilde{C}_{4\ell,2}^{(8+2n)}}{2^{n}} + \frac{\tilde{C}_{4\ell,5}^{(8+2n)}}{2^{n}} \right)$$

[Hays, Helset, Martin, Trott 2007.00565]
What about G_F?

G_F involves more than quadratic terms:

However, since G_F derived at muon mass scale $(D \sim m_{\mu} \ll \Lambda)$ and SM term is from L⁴, # of higher dimensional contributions is dramatically reduced

$$C_{4\ell,2}^{(8+2n)}\left(H^{\dagger}H\right)^{1+n}\left(\bar{\ell}_{2}\gamma^{\mu}\sigma^{i}\ell_{2}\right)\left(\bar{\ell}_{1}\gamma_{\mu}\sigma_{i}\ell_{1}\right) \qquad iC_{4\ell,5}^{(8+2n)}\epsilon_{ijk}\left(H^{\dagger}H\right)^{n}\left(H^{\dagger}\sigma^{i}H\right)\left(\bar{\ell}_{2}\gamma^{\mu}\sigma_{j}\ell_{2}\right)\left(\bar{\ell}_{1}\gamma_{\mu}\sigma_{k}\ell_{1}\right)$$

All orders result is possible even for contact terms:

$$\mathscr{G}_{F}^{4pt} = \frac{1}{\bar{v}_{T}^{2}} \left(\tilde{C}_{\mu c c \mu}^{(6)} + \tilde{C}_{\mu \mu \mu e}^{(6)} + \frac{\tilde{C}_{4\ell,2}^{(8+2n)}}{2^{n}} + \frac{\tilde{C}_{4\ell,5}^{(8+2n)}}{2^{n}} \right)$$

[Hays, Helset, Martin, Trott 2007.00565]

[from Craig et al '20]

light stuff

Tree vs. Loop

$$\mathscr{L}_{\rm UV} = \frac{1}{2} \Omega^T K \Omega - \Omega^T J + \mathcal{O} \left(\Omega^3 \right)$$

$$\Omega = \begin{pmatrix} \Phi \\ \Psi \\ \bar{\Psi} \\ \bar{\Psi} \\ V_{\mu} \end{pmatrix} \qquad K = \begin{pmatrix} -D^2 - M^2 & -y\psi & -y\bar{\psi} & 0 \\ -y\psi & -M - y\phi - (\bar{\sigma} \cdot iD)^T & 0 \\ -y\bar{\psi} & \bar{\sigma} \cdot iD & -M - y\phi & 0 \\ 0 & 0 & 0 & \eta^{\mu\nu} \left(D^2 + M^2 + g\phi^2\right) - D^{\nu}D^{\mu} + [D^{\mu}, D^{\nu}] \end{pmatrix} \qquad J = \begin{pmatrix} y\psi\psi + y\bar{\psi}\bar{\psi} + \lambda\phi^3 \\ y\phi\psi \\ y\phi\psi \\ g\bar{\psi}\sigma^{\mu}\psi + g\phi\overleftarrow{D}^{\mu}\phi \end{pmatrix}$$

heavy stuff

mass of heavy stuff **M**, interactions with 2 heavy fields

Integrate out Ω at tree-level = solve EOM, expand in **1/M**

$$\mathcal{L}_{\rm EFT} \supset \frac{1}{2M^2} J^T \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & M - y\phi & -(\bar{\sigma} \cdot iD)^T & 0 \\ 0 & \bar{\sigma} \cdot iD & M - y\phi & 0 \\ 0 & 0 & 0 & -\eta^{\mu\nu} \end{pmatrix} J \quad + \dots \quad \text{(at dim-6, similar but lengthier for dim-8)}$$

Expanding out, can see what terms are present. E.g.) no field strengths at dim-6!

Powerful new tool

of operators and their field content can be generated automatically via **Hilbert Series** [Lehman, AM '15, Henning et al '15, '17]

given symmetry group **G**, fields **φ**_i, **ψ**_i, **X**_i^{L,R} → Hilbert Series → invariant (Lorentz & gauge) operators,

Powerful new tool

of operators and their field content can be generated automatically via **Hilbert Series** [Lehman, AM '15, Henning et al '15, '17]

given symmetry group G, fields φ_i, ψ_i, X_i^{L,R} → Hilbert Series + and form of all invariant (Lorentz & gauge) operators,

- extends to all orders
- includes all IBP, EOM redundancies
- works for all sorts of EFT (SMEFT, nonlinear reps, nonrelativistic QFT)

[Kobach, Pal '17, '18, Graf et al '20]

Hilbert series:

 $\mathcal{H}_{SM} = \int d\mu_{Lorentz} \, d\mu_{gauge} \, \frac{1}{P} \, PE \Big[\sum_{\mu} \frac{\phi}{\mathcal{D}^{d_{\phi}}} \chi_{\phi} \Big] PEF \Big[\sum_{\mu'} \frac{\psi}{\mathcal{D}^{d_{\psi}}} \chi_{\psi} \Big]$ projects out invariants from generating function — generates polynomial (relies on character all possible polynomials of fields orthonormality) $(\Phi^2, \Phi \psi, \psi^2 \Phi, \text{etc.})$ and derivatives removes IBP redundancies

Real representation translation

Using γ_A = generators in real representation and $\Gamma_A = \gamma_A \gamma_4$, translate

$$\begin{split} H^{\dagger}\sigma_{a}H &= -\frac{1}{2}\phi_{I}\Gamma_{a,J}^{I}\phi^{J} \\ H^{\dagger}\hat{D}^{\mu}H &= -\phi_{I}\gamma_{4,J}^{I}\left(D^{\mu}\phi\right)^{J} = \left(D^{\mu}\phi\right)_{I}\gamma_{4,J}^{I}\phi^{J} \\ H^{\dagger}\hat{D}\hat{D}_{a}^{\mu}H &= -\phi_{I}\gamma_{a,J}^{I}\left(D^{\mu}\phi\right)^{J} = \left(D^{\mu}\phi\right)_{I}\gamma_{a,J}^{I}\phi^{J} \end{split}$$