The on-shell SM EFTs

Gauthier Durieux (CERN)

JHEP 01 (2020) 119, [1909.10551] with Teppei Kitahara, Yael Shadmi, Yaniv Weiss

Phys. Rev. D101 (2020) 095021, [1912.08827] with Camila Machado

JHEP 12 (2020) 175, [2008.09652] with Teppei Kitahara, Camila Machado, Yael Shadmi, Yaniv Weiss

Oklahoma State HEP Seminar, 23 Sep 2021

Lagrangians are powerful... but not always

Fields are unphysical and redundant

- $\cdot\,$ redefinitions do not alter the physics
- $\cdot\,$ four-vector/tensor to embed two dofs

Lagrangians are powerful... but not always

On-shell bootstrapping

- · Trees cut into trees
 - + contact terms
- Loops cut into trees
 no loops hereafter

factorization/unitarity

Recently

- · applications to EFTs
- · covariant massive spinor formalism

[Arkani-Hamed, Huang, Huang '17]

Contact terms

massless \rightarrow operator enumeration

(unbroken EW symmetry)

massive \rightarrow bootstrap building blocks

operator enumeration

[Shadmi, Weiss '18], [Ma, Shu, Xiao '19], [Falkowski '19], [GD, Machado '19], [Li, Ren, et al. '20, '20, '20]

SM(EFT) from massive amplitudes

SM: [Christensen, Field '18], [Bachu, Yelleshpur '19],

SMEFT: [Aoude, Machado '19], [GD, Kitahara, Shadmi, Weiss '19], [GD et al. '20], [Dong, Ma, Shu '21]

EFTs from soft properties

[Cheung et al. '14, '15, '16], [Low et al. '19, '19, '20]

SMEFT non-renormalizations, non-interferences, RGEs

[Cheung, Shen '15], [Azatov et al. '16], [Bern et al. '19, '20],
 [Jiang et al. '20], [Elias Miró et al. '20], [Baratella et al. '20, '20],
 [Baratella et al. '21], [Accettulli Huber, De Angelis '21]

. . .

Outline

Bootstrapping EFTs

- a. Massless contact terms
- b. Massive contact terms

Massive electroweak EFTs

a. Massless contact terms

Helicity spinors

As brackets

$$u_{i^+} = \begin{pmatrix} 0 \\ i \end{bmatrix}$$
, $u_{i^-} = \begin{pmatrix} i \\ 0 \end{pmatrix}$ for particle i

Rewritting momenta (and polarizations vectors)

$$p_{i}^{\mu}\sigma_{\mu}=i\rangle[i\qquad \left(\varepsilon_{i^{+}}^{\mu}\sigma_{\mu}=\frac{\zeta\rangle[i}{\sqrt{2}\langle\zeta i\rangle},\qquad \varepsilon_{i^{-}}^{\mu}\sigma_{\mu}=\frac{i\rangle[\zeta}{\sqrt{2}\langle\dot{\zeta}\zeta\rangle}\right)$$

Trivializing
$$p_i^2 = \langle ii \rangle [ii]/2 = 0$$

 $\langle ii \rangle = \epsilon_{\alpha\beta} i \rangle^{\alpha} i \rangle^{\beta} = 0, \qquad [ii] = \epsilon^{\dot{\alpha}\dot{\beta}} i]_{\dot{\alpha}} i]_{\dot{\beta}} = 0$

polarizations vectors)

[Mangano, Parke '91] [Helvang, Huang '13] [Dixon '13] [Schwartz '14] [Cheung '17]

Little group covariance

Little group transformations leave p_i invariant

Little group is $SO(2) \sim U(1)$ for massless p_i

Spinors i], i pick up phases proportional $\pm 1/2$

The amplitude picks up a phase proportional to h_i

Massless three-points

fully determined by little-group covariance

$$\mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = g \begin{cases} [12]^{h_1 + h_2 - h_3} & [23]^{h_2 + h_3 - h_1} & [31]^{h_3 + h_1 - h_2} & \text{for } h_1 + h_2 + h_3 > 0\\ \langle 12 \rangle^{-h_1 - h_2 + h_3} \langle 23 \rangle^{-h_2 - h_3 + h_1} \langle 31 \rangle^{-h_3 - h_1 + h_2} & \text{for } h_1 + h_2 + h_3 < 0 \end{cases}$$

$$f^{+}f^{+}s \ [12]$$

$$v^{+}v^{+}s \ [12]^{2}$$

$$f^{+}f^{-}v^{+} \ [13]^{2}/[12]$$

$$v^{+}v^{+}v^{-} \ [12]^{3}/[23][31]$$

$$t^{+}t^{+}t^{-}\left([12]^{3}/[23][31]\right)^{2}$$

Massless higher-points

Multiple independent structures for given helicities

satisfying · little group constraints

- momentum conservation
- · Schouten identities e.g. [12][34] - [13][24] + [14][23] = 0

Non-trivial Lorentz invariants

$$2\tilde{s}_{ij}=p_i\cdot p_j,\quad \epsilon_{\mu\nu\rho\sigma}p_i^{\mu}p_j^{\nu}p_k^{\rho}p_l^{\sigma}$$

Construction

- harmonics (distinguishable particles) [Henning, Melia '19]
- twistors trivializing momentum conservation
- systematic algorithm and explicit construction

[Falkowski '19]

[GD, Machado '19] [see also Accettulli Huber, De Angelis '21]

Massless higher-points

Multiple independent structures for given helicities

satisfying \cdot little group constraints

- \cdot momentum conservation
- · Schouten identities e.g. [12][34] [13][24] + [14][23] = 0

Non-trivial Lorentz invariants

$$2\tilde{\mathbf{s}}_{ii} = p_i \cdot p_i \quad \epsilon_{i} \cdots \epsilon_{i} p_i^{\mu} p_i^{\nu} p_i^{\rho} p_i^{\sigma}$$
e.g. minimal dimension of operators contributing to any helicity amplitude:
$$\dim\{\text{operator}\} \ge n - \sum_{i} \max(0, \text{ceil}\{|h_i| - 1\})$$

$$+ \sum_{i} |h_i| + 2 \max \begin{bmatrix} \{\sum_{h_i > 0} 2h_i\} \mod 2 \\ 2 \max\{|h_i|\} - \sum_{h_i > 0} |h_i| \\ 2 \max\{|h_i|\} - \sum_{h_i < 0} |h_i| \end{bmatrix}$$

$$\underset{k_i < 0}{\text{elia '19]}}$$
elia '19]

Stripped contact terms (SCTs)

Strip out Lorentz invariants from spinors

e.g. $[12][34] \times (\tilde{s}_{12} - \tilde{s}_{13})$

Exclude non-local relation in SCT basis reduction

×
$$[12][34] = -[13][24] \tilde{s}_{12}/\tilde{s}_{13}$$

✓
$$[12][34]$$
 $\tilde{s}_{13} = -[13][24]$ \tilde{s}_{12}

in out	e.g.	GR-S	MEFT			[GD, Machado '
	mult.	min. dim.	helicity conf.	spinor structures	SM gauge spin stat.	Hilbert series
	3-pt	dim-5	t^+t^+s	[12] ⁴	×	
		dim-6	$t^{+}t^{+}t^{+}$	$[12]^2[13]^2[23]^2$		C_R^3
			$t^{+}t^{+}v^{+}$ $t^{+}v^{+}v^{+}$	[12] ³ [23][13] [12] ² [13] ²	×	$(B_R^2, W_R^2, G_R^2)C_R$
	4-pt	dim-6	$\underline{t}^{+}\underline{t}^{+}ss$	$[12]^4$; $[12]^4 s_{12}$		$HC_R^2 H^{\dagger}$, $HD^2 H^{\dagger}C_R^2$
		dim-7	$t^+t^+t^+s$	$[12]^2[13]^2[23]^2$	×	
			$t^{+}t^{+}v^{+}s$	$[12]^{3}[13][23]$	x	
			$t^+ t^+ f^+ f^+$	[12]*[34] (1914/24)	×	
			$t^{+}v^{+}v^{+}s$	[12] (04)	x	
			$t^{+}v^{+}f^{+}f^{+}$	$[12]^2[13][14]$	x	
		dim-8	$\frac{\underline{t}^{+}\underline{t}^{+}\underline{t}^{+}\underline{t}^{+}}{t^{+}t^{+}t^{+}v^{+}}$	$[12]^4[34]^4 + [13]^4[24]^4 + [14]^4[23]^4$ $[12]^3[13][23][34]^2$, $[12][13]^3[23][24]^2$, $[12][13][23]^3[14]^2$	×	C_R^4
			$t^{+}t^{+}t^{-}t^{-}$	$[12]^4(34)^4$		$C_R^2 C_L^2$
			$t^{+}t^{+}v^{+}v^{+}$	$[12]^4[34]^2$, $[12]^2[13][14][24][23]$		$2(B_R^2, W_R^2, G_R^2)C_R^2$
			$t^{+}t^{+}v^{-}v^{-}$	[12]*(34)*		$(B_{L}^{a}, W_{L}^{a}, G_{L}^{a})C_{R}^{a}$
one per			$t^{+}t^{+}y^{+}y^{+}y^{+}$	$[12]^{[}(324)$ [12][13][14]([13][24] + [14][23])	,	$(W^2, G^2)B_{\mu}C_{\mu}$
helicities 🔪			$t^+v^+f^+f^-$	$[12]^{2}[13][124)$		$(QQ^{\dagger}, uu^{\dagger}, dd^{\dagger}, LL^{\dagger}, ee^{\dagger})DB_RC_R,$ $(QQ^{\dagger}, uu^{\dagger}, dd^{\dagger}, LL^{\dagger}, ee^{\dagger})DB_RC_R,$ $(QQ^{\dagger}, LL^{\dagger})DW_RC_R,$ $(QQ^{\dagger}, uu^{\dagger}, dd^{\dagger})DG_RC_R$
			t^+v^+ss	[12] ² [1231]		$(B_R, W_R)HH^{\dagger}D^2C_R$
			$t^+f^+f^+s$	[12][13][1231]		$(Q^{\dagger}u^{\dagger}H^{\dagger},Q^{\dagger}d^{\dagger}H,L^{\dagger}e^{\dagger}H)D^{2}C_{R}$
	5-pt	dim-7	t^+t^+sss	[12]4	x	
		dim-8	$t^+t^+t^+ss$	$[12]^{2}[13]^{2}[23]^{2}$		$HH^{\dagger}C_{R}^{3}$
			$t^+t^+v^+ss$	[12] ³ [13][23]	×	
ido d			$\underline{l}^{+}\underline{l}^{+}f^{+}f^{+}s$	[12] ⁴ [34]		$(Q^{\dagger}u^{\dagger}H^{\dagger}, Q^{\dagger}d^{\dagger}H, L^{\dagger}e^{\dagger}H)C_{R}^{2}$
iue i			1+v+v+v+ee	[12] ² (34) [12] ² [13] ²		$(QaH, QaH', LeH')C_R$ $(B_{2}^2, B_2W_2, W_2^2, G_2^2)HH^{\dagger}C_2$
			$t^+v^+f^+f^+s$	[12] [13][14]		$(Q^{\dagger}u^{\dagger}H^{\dagger}, Q^{\dagger}d^{\dagger}H, L^{\dagger}e^{\dagger}H)(B_R, W_R)C$
10][2]				11 1111		$(Q^{\dagger}u^{\dagger}H^{\dagger}, Q^{\dagger}d^{\dagger}H)G_{R}C_{R}$
			$i^+f^+f^+f^+f^+$	[12][13][14][15]		$Q^{\dagger}Q^{\dagger}Q^{\dagger}L^{\dagger}C_R, d^{\dagger}e^{\dagger}u^{\dagger 2}C_R,$ $d^{\dagger}Q^{\dagger 2}u^{\dagger}C_R, e^{\dagger}L^{\dagger}Q^{\dagger}u^{\dagger}C_R$
2112	6-pt	dim.8	t^+t^+ssss	[12]4		$H^{2}H^{12}C_{2}^{2}$

Massless operator bases

adding gauge structures, treating identical particles

- $\cdot h/Z + gluons$ [Shadmi, Weiss '18]
- SMEFT at dim-6 [Ma, Shu, Xiao '19]
- SMEFT at dim-8 and 9
 [Li, Ren, Shu, Xiao, Yu, Zheng '20]
 [see also Murphy '20]
 - [Li, Ren, Xiao, Yu, Zheng '20]
 - [Li Ren, Xiao, Yu, Zheng '20] [see also Murphy '20]
 - [GD, Machado '19] [see also Ruhdorfer, Serra, Weiler '19]

LEFT at dim-8 and 9

GR-SMEFT at dim-8

b. Massive contact terms

Spin spinors

Two massless for one massive $p^i_{\mu}\sigma^{\mu}_{\alpha\dot{\alpha}} = k^i \rangle [k^i + q^i \rangle [q^i = i^J \rangle [i_J \qquad \text{with} \begin{array}{l} k_i^2 = 0 = q_i^2, \ J = 1, 2 \\ 2k^i \cdot q^i = m_i^2 \end{array}$ Little group is now $SO(3) \sim SU(2)$

Spin *s* from 2s symmetrized spin 1/2

Bolded spinors with implicit SU(2) index symmetrization

e.g.
$$\langle 1'3^J \rangle \langle 2^K 3^{J'} \rangle + (J \leftrightarrow J') \rightarrow \langle \mathbf{13} \rangle \langle \mathbf{23} \rangle$$

$$\begin{array}{l} \textit{ffs} \ [12], \ \langle 12 \rangle \\ \textit{vvs} \ \langle 12 \rangle^2, \ \langle 12 \rangle [12], \ [12]^2 \\ \textit{ssv} \ [3(1-2)3) \equiv [3(p_1-p_2)3) \\ \textit{ffv} \ \langle 13 \rangle \langle 23 \rangle, \ \langle 13 \rangle [23], \ [13] \langle 23 \rangle, \ [13] [23] \\ \end{array}$$

High-energy limit

· choice for the decomposition $p^{\mu} = (E, p \hat{n}) = k^{\mu} + q^{\mu}$: $k^{\mu} = \frac{E+p}{2}(1, +\hat{n}), \qquad q^{\mu} = \frac{E-p}{2}(1, -\hat{n})$

ightarrow spin quantization axis $k^{\mu} \! - \! q^{\mu} \sim (1, \hat{n}) \rightsquigarrow$ helicity

High-energy limit

· choice for the decomposition $p^{\mu} = (E, p \hat{n}) = k^{\mu} + q^{\mu}$: $k^{\mu} = \frac{E+p}{2}(1, +\hat{n}), \qquad q^{\mu} = \frac{E-p}{2}(1, -\hat{n})$

ightarrow spin quantization axis $k^{\mu}\!-q^{\mu}\sim(1,\hat{n})\rightsquigarrow$ helicity

$$ightarrow k],k
angle\sim \sqrt{E}$$
 and $q],q
angle\sim m/\sqrt{E}$

· massless limit: un-bolding $+\mathcal{O}(m)$

e.g.
$$\langle \mathbf{13} \rangle \langle \mathbf{23} \rangle \rightarrow \langle \mathbf{13} \rangle \langle \mathbf{23} \rangle + \mathcal{O}(m)$$

 $\langle \mathbf{13} \rangle [\mathbf{23}] \rightarrow \langle \mathbf{1p_32} \rangle + \mathcal{O}(m)$

Massive three-points

Counting from angular momentum

number of irreps in the spin addition:

$$(2s_1+1)(2s_2+1) - p(p+1)$$
 with

[Costa, Penedones, Poland, Rychkov '11]

$$p \equiv \max\{0, s_1 + s_2 - s_3\}$$
$$s_1 \le s_2 \le s_3$$

Construction by correcting a massless-like ansatz [GD, Kitahara, Machado, Shadmi, Weiss '20]

$$(12)^{s_1+s_2-\tilde{s}_3} (23)^{-s_1+s_2+\tilde{s}_3} (13)^{s_1-s_2+\tilde{s}_3} [3(1-2)3\rangle^{s_3-\tilde{s}_3}$$
with $\begin{vmatrix} (ij)^k \equiv any \langle ij \rangle^{k-l} [ij]^l & \text{for } l = 0, ..., k$
 $s_1 \le s_2 \le s_3$
 $\tilde{s}_3 \equiv s_3 - \max\{0, s_3 - s_2 - s_1\}$
removing occurrences of $\epsilon(\varepsilon_1, \varepsilon_2, \varepsilon_3, \rho_1 + \rho_2 + \rho_3)$

$$\begin{array}{l} m_1 \langle \mathbf{12} \rangle \langle \mathbf{13} \rangle [\mathbf{23}] + m_2 \langle \mathbf{12} \rangle [\mathbf{13}] \langle \mathbf{23} \rangle + m_3 [\mathbf{12}] \langle \mathbf{13} \rangle \langle \mathbf{23} \rangle \\ = m_1 [\mathbf{12}] [\mathbf{13}] \langle \mathbf{23} \rangle + m_2 [\mathbf{12}] \langle \mathbf{13} \rangle [\mathbf{23}] + m_3 \langle \mathbf{12} \rangle [\mathbf{13}] [\mathbf{23}] \end{array}$$

	s_1 s_2 s_3 $n^{3-\text{pt}}$ n_{rel}	spinor structures)
Macciva	0 0 0 1	constant	
	0 0 1 1	$ 3(1-2)3\rangle$	
	0 0 2 1	$[3(1-2)3)^2$	
	0 0 3 1	$[3(1-2)3)^3$	
	0 1/2 1/2 2	([23], (23))	
Counti	0 1/2 3/2 2	$[3(1-2)3) \otimes ([23], \langle 23 \rangle)$	
Counti	0 1/2 5/2 2	$[3(1-2)3)^2 \otimes ([23], \langle 23 angle)$	
	0 1 1 3	$([23]^2, (23)[23], (23)^2)$	
	0 1 2 3	$[3(1-2)3 angle\otimes([23]^2,\langle23 angle[23],\langle23 angle^2)$	
nur	1001103 31Eps III UIE		land, Rychkov [1]
	0 3/2 3/2 4	$([23]^3, (23)[23]^2, (23)^2[23], (23)^3)$	
	0 3/2 5/2 4	$[3(1-2)3 angle\otimes ([23]^3, \langle 23 angle [23]^2, \langle 23 angle^2 [23], \langle 23 angle^3)$	$\vdash s_3$
	0 2 2 5	$([23]^4, \langle 23 \rangle [23]^3, \langle 23 \rangle^2 [23]^2, \langle 23 \rangle^3 [23], \langle 23 \rangle^4)$	-55
	(-0 - 2 - 3 - 5 (-0 - 2 - 1 - 1))	$[3(1-2)3 angle\otimes([23]^4,\langle23 angle[23]^3,\langle23 angle^2[23]^2,\langle23 angle^3[23],\langle23 angle^4)$	
	0 5/2 5/2 6	$([23]^5, \langle 23 \rangle [23]^4, \langle 23 \rangle^2 [23]^3, \langle 23 \rangle^3 [23]^2, \langle 23 \rangle^4 [23], \langle 23 \rangle^5) $	
	0 3 3 7	$([23]^{\circ}, \langle 23 \rangle [23]^{\circ}, \langle 23 \rangle^{2} [23]^{4}, \langle 23 \rangle^{5} [23]^{5}, \langle 23 \rangle^{4} [23]^{2}, \langle 23 \rangle^{6} [23], \langle 23 \rangle^{6})$	
	1/2 1/2 1 4	$([23], (23)) \otimes ([13], (13))$	
	1/2 1/2 2 4	$ 3(1-2)3 angle\otimes (23 ,\langle23 angle)\otimes (13 ,\langle13 angle)$	
-	1/2 1/2 3 4	$[3(1-2)3)^2 \otimes ([23], (23)) \otimes ([13], (13))$	
Constr	1/2 1 3/2 6	$([23]^{-}, (23)[23], (23)^{-}) \otimes ([13], (13))$	litahara, Machado,
Consti	1/2 1 5/2 6	$(111) \begin{bmatrix} [3(1-2)3) \otimes ([23]^2, (23)[23], (23)^2) \otimes ([13], (13)) \end{bmatrix} \subseteq \mathbb{C}^2$	Shadmi, Weiss '20]
	1/2 3/2 2 8	$([23]^{\circ}, (23)[23]^{\circ}, (23)^{\circ}[23], (23)^{\circ}) \otimes ([13], (13))$	
	1/2 3/2 3 8	$[3(1-2)3) \otimes ([23]^{\circ}, (23)[23]^{\circ}, (23)^{\circ}[23], (23)^{\circ}) \otimes ([13], (13))$	
(10	1/2 2 5/2 10	$([23]^{-}, (23)[23]^{-}, (23)^{-}[23]^{-}, (23)^{-}[23], (23)^{+}) \otimes ([13], (13))$	
(14	1/2 5/2 3 12	$([23]^\circ, (23)[23]^\circ, (23)^\circ [23]^\circ, (23)^\circ [23]^\circ, (23)^\circ [23], (23)^\circ) \otimes ([13], (13))$	
		$([12], (12)) \otimes ([23], (23)) \otimes ([13], (13))$ $([aa)^2, (aa)(aa), (aa)^2) \otimes ((2a)^2, (2a)(2a), (7a)^2)$	
	1 1 2 9	$([23]^{-}, (23)[23], (23)^{-}) \otimes ([13]^{-}, (13)[13], (13)^{-})$ $[2(1 - 3)_{2}) \otimes ([22]^{2}, (22), (22), (23)^{2}) \otimes ((12)^{2}, (12), (12), (12)^{-})$	
	1 1 3 9	$[3(1-2)3/\otimes ([23], (23/[23], (23/))\otimes ([13], (13/[13], (13/)))$ $((13)/(13)/(13))\otimes ((23)^2/(23)/(23)/(23)/(23)/(13)/(13)/(13)/(13)/(13)/(13)/(13)/(1$	
WIL	1 3/2 3/2 10 2	$([12], (12)) \otimes ([23], (23), (23), (23)) \otimes ([13], (13))$ $([23]^3, (23)(23)^2, (23)^2(23), (23)^3) \otimes ([13]^2, (13)(23))$	
	1 9 9 12 2	([23], (23)[23], (23)[23], (23)/(23)/(23), (13), (13)/(13), (13)/(13)/(13)/(13)/(13)/(13)/(13)/(13)/	
	1 2 2 15 5 1 2 3 15 5	$([12], (12)) \otimes ([23], (23)/[23], (23)/[23], (23)/(23)/(23)/(23)/(23)/(23)/(23)/(23)/$	
	1 5/2 5/2 16 4	([12], (12), (12), (12), (12), (12), (12), (12), (13	
	1 3 3 19 5 (12	$([12], (12)) \otimes ([23]^5 (23) [23]^4 (23)^2 [23]^3 (23)^3 [23]^2 (23)^4 [23] (23)^5 \otimes ([13], (13))$	
	3/23/2 2 14 4	$([12] (12)) \otimes ([23]^2 (23) [23] (23)^2) \otimes ([13]^2 (13) [13] (13)^2)$	
	3/2 3/2 3 16	$([23]^3, (23)[23]^2, (23)^2[23], (23)^3) \otimes ([13]^3, (13)[13]^2, (13)^2[13], (13)^3)$	
	3/2 2 5/2 18 6	$([12], (12)) \otimes ([23]^3, (23)[23]^2, (23)^2[23], (23)^3) \otimes ([13]^2, (13)[13], (13)^2)$	
ren	3/2 5/2 3 22 8 ([12	$,\langle 12\rangle) \otimes (23 ^4,\langle 23\rangle 23 ^3,\langle 23\rangle^2 23 ^2,\langle 23\rangle^3 23 ,\langle 23\rangle^4) \otimes (13 ^2,\langle 13\rangle 13 ,\langle 13\rangle^2)$	$+ p_2 + p_3)$
	2 2 2 19 8	$([12]^2, (12)[12], (12)^2) \otimes ([23]^2, (23)[23], (23)^2) \otimes ([13]^2, (13)[13], (13)^2)$	
	2 2 3 23 9 (12	$, \langle 12 \rangle) \otimes (23 ^3, \langle 23 \rangle 23 ^2, \langle 23 \rangle^2 23 , \langle 23 \rangle^3) \otimes (13 ^3, \langle 13 \rangle 13 ^2, \langle 13 \rangle^2 13 , \langle 13 \rangle^3)$	
	2 5/2 5/2 24 12 (12	$ ^{2}, \langle 12 \rangle [12], \langle 12 \rangle^{2}) \otimes ([23]^{3}, \langle 23 \rangle [23]^{2}, \langle 23 \rangle^{2} [23], \langle 23 \rangle^{3}) \otimes ([13]^{2}, \langle 13 \rangle [13], \langle 13 \rangle^{2})$	
	2 3 3 29 16 $([12]^2, (12)^2)$	$(12), (12)^2) \otimes ([23]^4, (23)[23]^3, (23)^2[23]^2, (23)^3[23], (23)^4) \otimes ([13]^2, (13)[13], (13)^2) $	
	$5/2 5/2 3 30 18 ([12]^2, (12)^2)$	$(12], (12)^2) \otimes ([23]^3, (23)[23]^2, (23)^2[23], (23)^3) \otimes ([13]^3, (13)[13]^2, (13)^2[13], (13)^3) \otimes ([13]^3, (13)^3) \otimes ([13)^3, (13)^3) \otimes ([13$	
	3 3 3 3 37 27 $([12]^3, \langle 12 \rangle [12]^3)$	$^{2}, \langle 12 \rangle^{2} [12], \langle 12 \rangle^{3}) \otimes ([23]^{3}, \langle 23 \rangle [23]^{2}, \langle 23 \rangle^{2} [23], \langle 23 \rangle^{3}) \otimes ([13]^{3}, \langle 13 \rangle [13]^{2}, \langle 13 \rangle^{2} [13], \langle 13 \rangle^{3})$	
			,

Massive higher-points

 $\tilde{s}_{ij} \equiv 2p_i \cdot p_j$

[GD, Kitahara, Machado, Shadmi, Weiss '20]

An aside: massive spinor structures

Counting from 3D conformal correlators $\prod (2s_i + 1)$

[Henning, Lu, Melia, Murayama '17] [Shomerus, Sobko, Isachenkov '16] [Kravchuk, Dimmons-Duffin '16]

Independence test with *P*-matrix determinant [Bonifacio, Hinterbichler '18]

inner product between spinor structures of identical spin content

$$P_{m,n} \equiv \sum_{\{I\},\{J\}} \boldsymbol{S}_{m}^{\{I\}*} \boldsymbol{S}_{n}^{\{J\}} \, \delta_{\{I\},\{J\}}$$

Construction by bolding massless amps

[GD, Kitahara, Machado, Shadmi Weiss '20]

- · Pick spinor structures whose leading high-energy limits contribute to different helicity amplitudes.
- Their *P*-matrix is diagonal in the massless limit as they do not interfere. So they are independent.
- · There are $\prod_i (2s_i + 1)$ of them. So they form a basis.

Massive higher-points

New massive redundancies in SCT basis reduction

e.g. in ffvs:
$$[12]\langle 3123 \rangle = ([12][313\rangle \tilde{s}_{23} - [12][323\rangle \tilde{s}_{13})/m_3$$

 $-\tilde{s}_{12}[13][23] - m_1[321\rangle [23] - m_2[312\rangle [13]$

Clear massless origins but non-trivial mass-completions

Massive higher-points

New massive redundancies in SCT basis reduction

e.g. in ffvs:
$$[12]\langle 3123 \rangle = ([12][313\rangle \tilde{s}_{23} - [12][323\rangle \tilde{s}_{13})/m_3 - \tilde{s}_{12}[13][23] - m_1[321\rangle [23] - m_2[312\rangle [13]$$

Clear massless origins but non-trivial mass-completions

e.g. in vvff:
$$\begin{array}{ll} [13]\langle 24\rangle \langle 231] + [23]\langle 14\rangle \langle 132] = \\ & -([13]\langle 24\rangle \langle 132](m_1^2 + \tilde{s}_{14}) + [23]\langle 14\rangle \langle 231](m_1^2 + \tilde{s}_{13}))/m_1m_2 \\ & + [12]([13]\langle 24\rangle \tilde{s}_{23}/m_2 - [23]\langle 14\rangle \tilde{s}_{13}/m_1) \\ & + [12]\langle 13\rangle \langle 24\rangle (m_1^2 + \tilde{s}_{14})m_3/m_1m_2 \\ & - [12]\langle 24\rangle \langle 321]m_3/m_2 + [34]\langle 12\rangle \langle 132]m_4/m_2 \\ & - \langle 12\rangle ([23]\langle 14\rangle m_3 + [24]\langle 13\rangle m_4)m_3/m_2 \\ & - [14][23]\langle 12\rangle \tilde{s}_{13}m_4/m_1m_2 \,. \end{array}$$

Explicit construction for 4-points and spins ≤ 1

Manaina hiak	spins	$n_{\rm SCT}$	n_{s}	hel. cat.	spinor structures	$n_{ m perm}$	$\min\{d_{op}\}$	ado. Shadmi. Weiss '20]
iviassive nign	8888	1	1	(0000)	constant	1	4	auo, Shaunn, weiss 20j
New massiv	<i>vsss</i>	$4 \rightarrow 3$	3	(0000) (+000)	$ \begin{array}{c} [121\rangle, [131\rangle \\ [1231] \rightarrow [1231] - \langle 1231\rangle \end{array} $	$\stackrel{1}{2 \rightarrow 1}$	5	
	ffss	4	4	$^{(++00)}_{(+-00)}$	[12] [132)	2 2	5 6	
e.g. in <i>ffvs</i> :	vvss	10 ightarrow 9	9	$(0000) \\ (+000) \\ (++00) \\ (+-00)$	$\begin{array}{c} [12]\langle 12\rangle, [131\rangle 232\rangle \\ [12] 132\rangle \\ [12]^2 \\ [132]^2 \rightarrow [132)^2 \rightarrow (132)^2 - (132]^2 \end{array}$	$\begin{array}{c}1\\4\\2\rightarrow1\end{array}$	4,6 6 8	
Clear mass	ffvs CS	$14 \rightarrow 12$ S OI	12 rigi	(++00) (+-00) (+++0) (++-0) (+-+0)	$\begin{array}{c} [12]\{[313\rangle,[323\rangle\}\\ [13](23)\\ [13][23]\\ [12](3123)\rightarrow \varrho\\ [13][312]\end{array}$	2 2 2 $2 \rightarrow 0$ 4	6 5 6 8 7	ons
o g in wift:	,,,,,	18	16	(++++) (++) (+++-)	$\begin{array}{c} [12][34], [13][24]\\ [12](34)\\ [12][324\rangle \end{array}$	2 6 8	6 6 7	
e.g. 11 Wh.	vvvs	$35 \rightarrow 29$	27	$\begin{array}{c} (0000) \\ (+000) \\ (++00) \\ (+-00) \\ (+++0) \\ (++-0) \end{array}$	$\begin{array}{c} [12][343\rangle(12\rangle, [13]][242\rangle(13\rangle, [23]][141\rangle(23)\\ 1[2][13](23)\\ [12]^2[[513\rangle, [323]\}\\ 1[3][132\rangle(23)\\ 1[3][132\rangle(23)\\ 1[2]^2[[13](23)\\ 1[22]^2(3123)\rightarrow\phi\end{array}$	$ \begin{array}{c} 1 \\ 6 \\ 6 \\ 6 \\ 2 \\ \beta \rightarrow 0 \end{array} $	5 5 7 7 9	$\tilde{s}_{13}))/m_1m_2$
	vvff	$46 \rightarrow 38$	36	$\begin{array}{c} (00++)\\ (00+-)\\ (0-++)\\ (0+++)\\ (0++-)\\ (+++-)\\ (++++)\\ (-+++)\\ (++)\\ (++)\\ (++)\end{array}$	$\begin{array}{c} (12)\times\{12\ 34 , 13 24\}\}\\ (14)(231 23 ,(24)(132 13)\\ (12)(34)(241)-12 34 (2441)/m_1-(142 /m_2))\\ (132)\times\{12 34 , 13 24\}\}\\ (14) 12 23\\ (14) 12 23 \\ (12) 23 24]\\ (12)\times\{12 34 , 13 24 \}\\ (1231) 231 23 24] \rightarrow 0\\ (1231) 231 24 \rightarrow 0\\ (1231) 23 24 \rightarrow 0\\ (1231) 24 24 24 24 \rightarrow 0\\ (1231) 24 24 \rightarrow 0\\ (1231) 24 24 24 \rightarrow 0\\ (1231) 24$	2 2 $4 \rightarrow 2$ 4 4 4 4 4 4 4 4 4 4	5 6 7 6 8 7 9 7 8	
Explicit cor	vvvv	116 → 85	tio	$\begin{array}{c} (0000) \\ (+000) \\ (++00) \\ (+-00) \\ (+++0) \\ (++-0) \\ (++++) \\ (+++-) \\ (++) \end{array}$	$ \begin{array}{l} (12 34 , 13 24) \times (12 (34), (13)(24)) \\ (12 34 , 13 24) \times 143/(34) \rightarrow \cdots \\ (12 34 , 13 24) \times 123/(34) \\ (13 14 23 , 13 24) \times 12 34 \\ (12 34 , 13 24) \times 12 34 34 34 36 36 36 36 36 36 36$	1 12 12 12 $3 \rightarrow 32 \rightarrow 32$ 2 $3 \rightarrow 0$ 6	4 6 6 5 8 5 8 10 8	

Gauthier Durieux - Oklahoma State HEP Seminar - 23 Sep 2021

Massive electroweak EFTs

Assumptions

Poincaré, locality, unitarity

electroweak spectrum:
$$\psi, \psi', \gamma, Z, W^{\pm}, h$$

(all massive but γ)

global electric charge & fermion number $|Q_\psi - Q_{\psi'}| = |Q_W|$

Recovering electroweak symmetry

Given a particle content, from perturbative unitarity up to $\bar{\Lambda} \gg m!$

[Llewelly Smith '73] [Joglekar '73] [Conwall et al. '73, '74]

HIGH ENERGY BEHAVIOUR AND GAUGE SYMMETRY

C.H. LLEWELLYN SMITH

CERN, Geneva, Switzerland

Received 13 May 1973

The imposition of unitarity bounds is shown to lead to a Yang-Mills structure in a wide class of theories involving vector mesons. Scalar fields are needed and, at least in simple cases, the unique unitary theory is of the Higgs type

S-Matrix Derivation of the Weinberg Model¹

SATISH D. JOGLEKAR

Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11790

Received June 18, 1973

Uniqueness of Spontaneously Broken Gauge Theories*

John M. Cornwall, * David N. Levin, and George Tiktopoulos Department of Physics, University of California, Los Angeles, California 90024 (Received 25 April 1973)

We have made a systematic search for theories of interacting heavy vector mesons which have unitarily bound trees. In simple cases (four vector mesons and one scalar particle) the only unitarily bound models are spontaneously broken gauge theories. Evidently, a unitarity bound, which controls high-energy behavior, imposes internal symmetry on heavy-vector-boosn itseractions.

a. Massive EW three-points

Perturbative unitarity at three-point?

Rule of thumb:

Three-points growing as E^2/m or faster (for complex momenta) lead to unacceptable E^2/m^2 four-point growths.

not considered here

(the dependence of the spinor structure coefficient on the propagator virtuality could cancel the E growth)

 $ightarrow E^2$ three-points only arise ightarrow at the loop level \swarrow

Perturbative unitarity at three-point?

Rule of thumb:

Three-points growing as E^2/m or faster (for complex momenta) lead to unacceptable E^2/m^2 four-point growths.

not considered here

(the dependence of the spinor structure coefficient on the propagator virtuality could cancel the E growth)

 $\to E^2$ three-points only arise $~\cdot$ at the loop level \backsim $~\cdot$ at the $1/\bar{\Lambda}$ level

$\begin{array}{l} \langle \mathbf{13} \rangle \langle \mathbf{23} \rangle, \ \langle \mathbf{13} \rangle [\mathbf{23}], \ [\mathbf{13}] \langle \mathbf{23} \rangle, \ [\mathbf{13}] [\mathbf{23}] \\ \text{four terms expected from ang. mom.: } 2 \otimes 2 \otimes 3 = 1 \oplus 3 \oplus 3 \oplus 5 \end{array}$

$$(13)\langle 23\rangle, \ \langle 13\rangle [23], \ [13]\langle 23\rangle, \ [13][23]$$

 $\rightarrow \sim y_{\psi}$

 \rightarrow pseudo-scalar

more in the four-point discussion

W^+W^-Z

$$\cdot$$
 8 combinations of $\begin{array}{c} \langle 12 \rangle \\ [12] \otimes \begin{array}{c} \langle 23 \rangle \\ [23] \otimes \begin{array}{c} \langle 31 \rangle \\ [31] \end{array}$

· one non-trivial relation between them: $m_1\langle 12\rangle\langle 13\rangle[23] + m_2\langle 12\rangle[13]\langle 23\rangle + m_3[12]\langle 13\rangle\langle 23\rangle$ $= m_1[12] [13]\langle 23\rangle + m_2[12]\langle 13\rangle[23] + m_3\langle 12\rangle[13] [23]$

7 combinations expected from angular momentum $3\otimes 3\otimes 3=1\oplus 3\oplus 3\oplus 3\oplus 5\oplus 5\oplus 7$

· combinations growing like E^3 and E^2 can only arise at the non-renormalizable (tree) level W^+W^-Z

$$\begin{split} \mathcal{M}(\mathbf{1}_{W},\mathbf{2}_{W},\mathbf{3}_{Z}) &= & \mathsf{P} \text{ is } \cdot] \leftrightarrow \cdot \rangle \\ &+ \langle \mathbf{12} \rangle \langle \mathbf{13} \rangle \langle \mathbf{23} \rangle \; c_{WWZ}^{LLL} / \bar{\Lambda}^{2} \\ &+ \langle \mathbf{12} \rangle (\langle \mathbf{13} \rangle [\mathbf{23}] - [\mathbf{13}] \langle \mathbf{23} \rangle) \; c_{WWZ}^{[L0]0} / m_{Z} \bar{\Lambda} \\ &+ \langle \mathbf{12} \rangle (\langle \mathbf{13} \rangle [\mathbf{23}] + [\mathbf{13}] \langle \mathbf{23} \rangle) \; c_{WWZ}^{\{L0\}0} / m_{Z} \bar{\Lambda} \\ &+ \left\{ [\mathbf{12}] \langle \mathbf{13} \rangle \langle \mathbf{23} \rangle \; m_{Z} / m_{W} + \langle \mathbf{12} \rangle [\mathbf{13}] \langle \mathbf{23} \rangle + \langle \mathbf{12} \rangle \langle \mathbf{13} \rangle [\mathbf{23}] \\ &+ \langle \mathbf{12} \rangle \; [\mathbf{13}] \; [\mathbf{23}] \; m_{Z} / m_{W} + [\mathbf{12}] \; \langle \mathbf{13} \rangle [\mathbf{23}] + [\mathbf{12}] \; [\mathbf{13}] \; \langle \mathbf{23} \rangle \right\} \; c_{WWZ} / m_{Z} m_{W} \\ &+ [\mathbf{12}] (\langle \mathbf{13} \rangle [\mathbf{23}] - [\mathbf{13}] \langle \mathbf{23} \rangle) \; c_{WWZ}^{[R0]0} / m_{Z} \bar{\Lambda} \\ &+ [\mathbf{12}] (\langle \mathbf{13} \rangle [\mathbf{23}] + [\mathbf{13}] \langle \mathbf{23} \rangle) \; c_{WWZ}^{[R0]0} / m_{Z} \bar{\Lambda} \\ &+ [\mathbf{12}] [\mathbf{13}] [\mathbf{23}] \; c_{WWZ}^{RRR} / \bar{\Lambda}^{2} \,, \end{split}$$

• one single (rather non-trivial) renormalizable structure!

C is $1 \leftrightarrow 2$

 W^+W^-Z

- \cdot one single (rather non-trivial) renormalizable structure!
- · for identical vectors $(m_Z/m_W \rightarrow 1)$
 - $\cdot\,$ no fully symmetric combination \rightarrow ZZZ vanishes
 - · only fully antisymmetric combinations $\rightarrow W^a W^b W^c$ requires ϵ_{abc}

C is $1 \leftrightarrow 2$

All three-points

 $\psi^{c}\psi Z$ $\psi^{c}\psi\gamma$ $\psi^{c}\psi'W$ $\psi^{c}\psi h$ ZZh, WWh $\gamma\gamma h, \gamma Zh$ $hhZ, hh\gamma$ hhh WWZ $WW\gamma$ ZZZ, ZZ γ , Z $\gamma\gamma$, $\gamma\gamma\gamma$

All three-points

[see also renormalizable discussion in Christensen et al. '18]

Matching to SMEFT

Extending results from [Aoude, Machado '19] Warsaw basis conventions from [Dedes et al. '17]

Three-point amplitude coefficients capture all orders in v/Λ .

e.g.
$$\mathcal{M}(\mathbf{1}_{\psi^c}, \mathbf{2}_{\psi}, \mathbf{3}_{Z}) = \frac{c_{\psi^c \psi^Z}^{LLL}}{\overline{\Lambda}} \langle \mathbf{13} \rangle \langle \mathbf{23} \rangle + \frac{c_{\psi^c \psi^Z}^{LR0}}{m_Z} \langle \mathbf{13} \rangle [\mathbf{23}] + \frac{c_{\psi^c \psi^Z}^{RL0}}{m_Z} [\mathbf{13}] \langle \mathbf{23} \rangle + \frac{c_{\psi^c \psi^Z}^{RRR}}{\overline{\Lambda}} [\mathbf{13}] [\mathbf{23}]$$

at dim-6:

$$\begin{split} c^{LR0}_{\psi^{c}\psi^{J}Z} &= -\sqrt{2}Q_{\psi} \frac{\bar{g}'^{2}}{\sqrt{\bar{g}^{2} + \bar{g}'^{2}}} + \frac{v^{2}}{\Lambda^{2}} \left[-\sqrt{2} \frac{\bar{g}^{3}\bar{g}'}{(\bar{g}^{2} + \bar{g}'^{2})^{3/2}} Q_{\psi} C_{\varphi WB} - \frac{1}{\sqrt{2}} \sqrt{\bar{g}^{2} + \bar{g}'^{2}} C_{\varphi \psi_{R}} \right] \\ c^{RL0}_{\psi^{c}\psi^{J}Z} &= \sqrt{2}I_{\psi} \frac{\bar{g}^{2}}{\sqrt{\bar{g}^{2} + \bar{g}'^{2}}} - \sqrt{2}Y_{\psi} \frac{\bar{g}'^{2}}{\sqrt{\bar{g}^{2} + \bar{g}'^{2}}} \\ &+ \frac{v^{2}}{\Lambda^{2}} \left[\sqrt{2} \frac{\bar{g}\bar{g}\bar{g}'}{(\bar{g}^{2} + \bar{g}'^{2})^{3/2}} \left(-Y_{\psi}\bar{g}^{2} + I_{\psi}\bar{g}'^{2} \right) C_{\varphi WB} \\ &- \frac{1}{\sqrt{2}} \sqrt{\bar{g}^{2} + \bar{g}'^{2}} \left(C^{1}_{\varphi\psi_{L}} - 2I_{\psi} C^{3}_{\psi\psi_{L}} \right) \right] \\ \frac{\zeta^{RRR}_{\psi^{c}\psi^{J}Z}}{\bar{\Lambda}} &= \frac{v}{\Lambda^{2}} \left(-4I_{\psi} \frac{\bar{g}}{\sqrt{\bar{g}^{2} + \bar{g}'^{2}}} C_{\psi W} + 2 \frac{\bar{g}'}{\sqrt{\bar{g}^{2} + \bar{g}'^{2}}} C_{\psi B} \right) \\ c^{LLL}_{\psi^{c}\psi^{J}Z} &= \left(c^{RRR}_{\psi^{c}\psi^{J}Z} \right)^{*} \end{split}$$

b. Full four-point example: $\psi^{c}\psi Zh$

 $\mathsf{contact} + \mathsf{factorizable\ terms}$

Contact terms

Twelve independent SCTs:

Twelve independent SCTs:

$$\mathcal{M}^{nf}(\mathbf{1}_{\psi^{c}}, \mathbf{2}_{\psi}, \mathbf{3}_{Z}, \mathbf{4}_{h}) = \frac{c_{\psi^{c}\psi^{Zh}}^{RR}}{\overline{\Lambda}^{2}} [\mathbf{13}][\mathbf{23}] + \frac{[\mathbf{12}]}{\overline{\Lambda}^{3}} \langle \mathbf{3} \{ c_{\psi^{c}\psi^{Zh}}^{RRO_{A}}(\mathbf{1}+2) + c_{\psi^{c}\psi^{Zh}}^{RRO_{S}}(\mathbf{1}-2) \} \mathbf{3}] \\
+ \frac{c_{\psi^{c}\psi^{Zh}}^{RIO}}{\overline{\Lambda}^{2}} [\mathbf{13}] \langle \mathbf{23} \rangle + \frac{c_{\psi^{c}\psi^{Zh}}^{RRP}}{\overline{\Lambda}^{3}} [\mathbf{312}\rangle [\mathbf{13}] + \frac{c_{\psi^{c}\psi^{Zh}}^{RRO_{S}}}{\overline{\Lambda}^{3}} \langle \mathbf{321}] \langle \mathbf{23} \rangle \\
+ \frac{c_{\psi^{c}\psi^{Zh}}^{LRO}}{\overline{\Lambda}^{2}} \langle \mathbf{13} \rangle [\mathbf{23}] + \frac{c_{\psi^{c}\psi^{Zh}}^{LRP}}{\overline{\Lambda}^{3}} [\mathbf{321}\rangle [\mathbf{23}] + \frac{c_{\psi^{c}\psi^{Zh}}^{RRO_{S}}}{\overline{\Lambda}^{3}} \langle \mathbf{312}] \langle \mathbf{13} \rangle \\
+ \frac{c_{\psi^{c}\psi^{Zh}}}{\overline{\Lambda}^{2}} \langle \mathbf{13} \rangle \langle \mathbf{23} \rangle + \frac{\langle \mathbf{12} \rangle}{\overline{\Lambda}^{3}} \langle \mathbf{3} \{ c_{\psi^{c}\psi^{Zh}}^{LLO_{A}}(\mathbf{1}+2) + c_{\psi^{c}\psi^{Zh}}^{LLO_{S}}(\mathbf{1}-2) \} \mathbf{3}] \\$$
where $c_{\psi^{c}\psi^{Zh}}$'s are expansions in $\tilde{s}_{ij} \equiv 2p_{i} \cdot p_{j}$

(negative power of $p_i \cdot p_j$ would cover factorizable contributions, non-rational functions would cover loop contributions)

- Perturbative unitarity up to $\bar{\Lambda} \gg m$ forbids e.g. $[\mathbf{13}]\langle \mathbf{23} \rangle / m_3 \bar{\Lambda}$.
- · For $p_h \rightarrow 0$ (aka soft Higgs limit), one recovers $\psi^c \psi Z$ amplitudes.

Factorizable terms

Leading high-energy amplitudes $\sim E/m$:

$$(--0): \quad -\frac{\langle 12 \rangle}{\sqrt{2}m_Z} \left(c^R_{\psi^c \psi Z} - c^L_{\psi^c \psi Z} \right) \left(c_{ZZh} \frac{m_{\psi}}{2m_Z} - c^L_{\psi^c \psi h} \right)$$
$$(++0): \quad +\frac{\langle 12 \rangle}{\sqrt{2}m_Z} \left(c^R_{\psi^c \psi Z} - c^L_{\psi^c \psi Z} \right) \left(c_{ZZh} \frac{m_{\psi}}{2m_Z} - c^R_{\psi^c \psi h} \right)$$

either vector-like fermion: $c^R_{\psi^c\psi Z} = c^L_{\psi^c\psi Z}$ up to $\mathcal{O}(m/\bar{\Lambda})$ or Higgs mechanism: $c^L_{\psi^c\psi h} = c_{ZZh} \frac{m_{\psi}}{2m_Z} = c^R_{\psi^c\psi h}$

The on-shell SM EFTs

Going on-shell avoids gauge and field-redefinition redundancies.

Massless contact terms can be bootstrapped and replace massless operator enumerations.

Massive contact terms can be constructed systematically, although n>4 and spins>1 are presently cumbersome.

Gauge symmetries emerge from perturbative unitarity, for a given particle spectrum.

The machinery is in place for massive SM EFTs applications!