

Christoph Englert

Effective Field Theory for Higgs and Top Physics

Oklahoma State University 30/09/21

The Standard Model: taking stock

Status of LHC measurements

everything is consistent with the SM Higgs hypothesis (so far) but what are the implications for new physics?

Fingerprinting the lack of new physics

no evidence for exotics

coupling/scale separated BSM physics

Effective Field Theory $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \dots$ [Buchmüller, Wyler `87] ^{*i*} [Hagiwara, Peccei, Zeppenfeld, Hikasa `87] [Giudice, Grojean, Pomarol, Rattazzi `07] [Grzadkowski, Iskrzynski, Misiak, Rosiek `10] [Brivio, Jiang, Trott `17].... 59 B-conserving operators \otimes flavor \otimes h.c., d=6 2499 parameters (reduces to 76 with N_f=1)

the SM is flawed

- concrete models
 - extended SMEFT
 - (\mathbb{C}) Higgs portals
 - 2HDMs
- simplified models
- compositeness....

Are EFTs collider tools to improve on the expected and perhaps even observe the unexpected?

- CP violating Higgs interactions?
- improving our understanding Higgs propagation ?
- BSM interplay of top/Higgs sectors?

• in practice this is (often) not a huge problem for large data samples

- in practice this is (often) not a huge problem for large data samples
- but qualitatively different for CP-violation:

 $rac{c_i}{\Lambda^2}$

~ dim 6

only genuinely CP-sensitive observables carry information signed \$\Delta\phi_{jj}\$, asymmetries,
 ...[Plehn et al. `01]... [Figy et al. `06]...

naive perturbative power counting

~ (dim 6)²

• every CP-even observable carries information

cross sections, widths, pT spectra...

CP violation

[Bernlochner, CE, Hays, Lohwasser, Mildner, Pilkington, Price, Spannowsky `18]

CP violation

[ATLAS, 2006.15458]

Wilson	Includes	95% confidence	<i>p</i> -value (SM)	•	ATLAS see a tension	
coefficient	$ \mathcal{M}_{d6} ^2$	Expected	Observed			1 1 () . 1
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%		related to CP violation in
	yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%		WDE Zone duction
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%		W DF Z production
	yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%		
c_{HWB}/Λ^2	no	[-2.45, 2.45]	[-3.70.1.13]	29.0%		sign for hierarchical new
	yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%		
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%		physics beyond the SM ?
	yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%		

[Das Bakshi, Chakrabortty, CE, Spannowsky, Stylianou `20]

CP violation

[ATLAS, 2006.15458]

-							
	Wilson	Includes	95% confidence	<i>p</i> -value (SM)	•	ATLAS see a tension	
	coefficient	$ \mathcal{M}_{d6} ^2$	Expected	Observed			1 1 (D) · 1 · ·
	c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%		related to CP violation in
		yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%		WDE Zere duction
	\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%		WBF Z production
		yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%		
	c_{HWB}/Λ^2	no	[-2.45, 2.45]	-3.70. 1.13	29.0%	•	sign for hierarchical new
		yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%		
	$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%		physics beyond the SM ?
		yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%		

• what can be learned from this?

[Das Bakshi, Chakrabortty, CE, Spannowsky, Stylianou `20]

- Assumptions of two-parameter CP fits theoretically consistent in a wide class of vector-like leptons
- Hierarchy $|C_{H\widetilde{W}B}|/\Lambda^2 > |C_{\widetilde{W}}|/\Lambda^2$ predicted in these scenarios
- broad UV assumptions reduce complexity of fit whilst facilitating matching more straightforwardly

Are EFTs collider tools to improve on the expected and perhaps even observe the unexpected?

• CP violating Higgs interactions?

• improving our understanding Higgs propagation ?

• BSM interplay of top/Higgs sectors?

Higgs propagation

 specific dim 6 operators much better constrained than naively expected! Can we use similar tricks for the Higgs?

Higgs propagation

J.D.4

• access oblique Higgs propagator corrections

$$\Delta_h(p^2) = \frac{1}{p^2 - m_h^2} - \frac{\hat{H}}{m_h^2} \qquad \hat{H} = -\frac{m_h^2}{2} \Sigma_h''(m_h^2)$$

similar to

....
$$\mathcal{L}_{\hat{W}} = -\frac{\hat{W}}{4m_W^2} (D_{\rho} W^a_{\mu\nu})^2 , \quad \mathcal{L}_{\hat{Y}} = -\frac{\hat{Y}}{4m_W^2} (\partial_{\rho} B_{\mu\nu})^2 , \quad \mathcal{L}_{\hat{H}} = \frac{\hat{H}}{m_h^2} |\Box H|^2$$

Barbieri et al. `04]

...

 excellent prospects to surpass LEP(2) sensitivity at high energy colliders due to scaling

$$\hat{T} = \mathcal{O}(q^{0})$$

$$\hat{S} = \mathcal{O}(q^{2})$$

$$\hat{W}, \hat{Y} = \mathcal{O}(q^{4})$$
[Farina et al. `17]
[Franceschini et al. `18]
[Banerjee, Gupta, CE, Spannowsky `18]

• high energy frontier is an efficient probe at large cutoff FCC-ee $|\hat{H}| \lesssim 0.5\%$

1

15

Higgs propagation

...in loops...

► precision analysis of Z-pole measurements ($e^+e^- \rightarrow ff^2$) sensitive to Higgs corrections $\mathcal{L} \supset -\lambda S^2(\Phi^{\dagger}\Phi - v^2/2)$ [CE, Jaeckel, Spannowsky, Stylianou `20]

- for $m_S > m_H/2$ no direct SM Higgs decays
- BSM Higgs physics via momentum- or loop-suppressed effects

Higgs propagation

singlets above threshold

Are EFTs collider tools to improve on the expected and perhaps even observe the unexpected?

• CP violating Higgs interactions?

• improving our understanding Higgs propagation ?

• BSM interplay of top/Higgs sectors?

What do tops have to say about the presence of new scalar states?

- $-new top-philie states arise in many BSM theories: <math>-(c_S \bar{t}_L t_R S + h.c.)$

 EFT is suitable tool to constrain such states model-independently, *however matching is crucial!* [CE, Galler, White `19]

New physics in tops

• EFT is suitable tool to constrain such states model-independently, *however matching is crucial!* [CE, Galler, White `19] $I(\mathcal{O}_{1G})$, rep.

New physics in tops

• EFT is suitable tool to constrain such states model-independently, *however matching is crucial and so are expected uncertainties*

Strong interactions? Compositeness....

- gauge boson masses through symmetry choices e.g. [Contino `10]
- fermion masses through mixing with baryonic matter (part. compositeness)
- minimal pheno model $SO(5) \rightarrow SO(4) \approx SU(2)_L \times SU(2)_R$
- fermions (and hypercolour baryons) in a 5 of SO(5)

- gauge boson masses through symmetry choices e.g. [Contino `10]
- fermion masses through mixing with baryonic matter (part. compositeness)
- minimal pheno model $SO(5) \rightarrow SO(4) \simeq SU(2)_L \times SU(2)_R$
- fermions (and hypercolour baryons) in a 5 of SO(5)

so far no UV completion known for this!

- gauge boson masses through symmetry choices e.g. [Contino `10]
- fermion masses through mixing with baryonic matter (part. compositeness)
- minimal pheno model $SO(5) \rightarrow SO(4) \approx SU(2)_L \times SU(2)_R$
- fermions (and hypercolour baryons) in a 5 of SO(5)

so far no UV completion known for this!

• but

CC

$$\underbrace{SU(4)}_{G_{\rm HC}} \times \underbrace{SU(5) \times SU(3) \times SU(3)' \times U(1)_X \times U(1)'}_{G_F}$$
[Ferretti`14]

ould work with
$$G_F/H_F = \frac{SU(5)}{SO(5)} \times \frac{SU(3) \times SU(3)'}{SU(3)} \times U(1)'$$

• model predicts a number of exotics phenomenological implications

$$G_F/H_F = \frac{SU(5)}{SO(5)} \times \frac{SU(3) \times SU(3)'}{SU(3)} \times U(1)'$$

 $1_0 + 2_{\pm 1/2} + 3_0 + 3_{\pm 1}$

[CE, Schichtel, Spannowsky `17]

Exotic Higgs bosons and SM Higgs coupling modifications

top partners and top coupling modifications hyperpions

[Belyaev et al. `17]

[Ferretti `14] [Matsedonskyi, Panico, Wulzer `15] [Brown, CE, Galler, Stylianou `20]

- Higgs coupling constraints
- compatibility with exotics searches
- cosmology
- here: focus on elw top properties

 $J_{W^{+}}^{\mu}/e = c_{XT}\bar{X}\gamma^{\mu}T + c_{XY}\bar{X}\gamma^{\mu}Y + c_{XR}\bar{X}\gamma^{\mu}R$ $+ c_{TB}\bar{T}\gamma^{\mu}B + c_{YB}\bar{Y}\gamma^{\mu}B + c_{RB}\bar{R}\gamma^{\mu}B ,$

. . . .

model predicts a number of exotics phenomenological implications

$$G_F/H_F = \frac{SU(5)}{SO(5)} \times \frac{SU(3) \times SU(3)'}{SU(3)} \times U(1)'$$

$$\Psi = \frac{1}{\sqrt{2}} \begin{pmatrix} iB - iX \\ B + X \\ iT + iY \\ -T + Y \\ \sqrt{2}iR \end{pmatrix} \quad \hat{Q}_L = \begin{pmatrix} ib_L \\ b_L \\ it_L \\ -t_L \\ 0 \end{pmatrix}, \quad \hat{t}_R = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ t_R \end{pmatrix}, \quad \hat{b}_R = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ b_R \end{pmatrix}$$

top partners and top coupling modifications

 $(T,B) \in (\mathbf{3},\mathbf{2})_{1/6}, R \in (\mathbf{3},\mathbf{1})_{2/3}, (X,Y) \in (\mathbf{3},\mathbf{2})_{7/6}.$

indirect top sector constraints

• include range of data (for extrapolation)

Analysis	Collaboration	\sqrt{s} [TeV]	Observables	dof	Analysis	Collaboration	\sqrt{s} [TeV]	Observables	dof
single top <i>t</i> -channel					$t\bar{t}Z$				
1503.05027 [45]	CDF, D0	1.96	$\sigma_{ m tot}$	1	1509.05276 [55]	ATLAS	8	$\sigma_{ m tot}$	1
1406.7844 [46]	ATLAS	7	$\frac{\sigma_t}{\sigma_{\bar{t}}},$	1	1510.01131 [56]	CMS	8	$\sigma_{ m tot}$	1
			$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}p^{t}}, \frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}p^{t}},$	8	1901.03584 [57]	ATLAS	13	$\sigma_{ m tot}$	1
			$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d} y_t }, \ \frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d} y_{\bar{t}} }$	6	1907.11270 [58]	CMS	13	$\sigma_{\rm tot}, \frac{1}{\sigma} \frac{{\rm d}\sigma}{{\rm d}n^Z},$	4
1902.07158 [47]	ATLAS,CMS	$7,\!8$	$\sigma_{ m tot}$	2				$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_Z^*}$	3
1609.03920 [48]	ATLAS	13	$\sigma_t, ~ rac{\sigma_t}{\sigma_{\overline{t}}}$	2	W boson helicity fractions			<u>L</u>	
1812.10514 [49]	CMS	13	$rac{\sigma_t}{\sigma_{ar t}}, \sigma_t$	2	1211.4523 [59]	CDF	1.96	F_0, F_R	2
single top s -channel					1205.2484 [60]	ATLAS	7	F_0, F_L, F_R	3
1402.5126 [50]	CDF, D0	1.96	$\sigma_{ m tot}$	1	1308.3879 [61]	CMS	7	F_0, F_L, F_R	3
1902.07158 [47]	ATLAS, CMS	7, 8	$\sigma_{ m tot}$	2	1612.02577 [62]	ATLAS	8	F_0, F_L	2
tW					top quark decay width				
1902.07158 [47]	ATLAS, CMS	7, 8	$\sigma_{ m tot}$	2	1201.4156 [63]	D0	1.96	Γ_t	1
1612.07231 [51]	ATLAS	13	$\sigma_{ m tot}$	1	1308.4050 [64]	CDF	1.96	Γ_t	1
1805.07399 [<mark>52</mark>]	CMS	13	$\sigma_{ m tot}$	1	1709.04207 [65]	ATLAS	8	Γ_t	1
tjZ									
1710.03659 [53]	ATLAS	13	$\sigma_{ m tot}$	1				נידי ד	.
1812.05900 [54]	CMS	13	$\sigma_{ m tot}$	1				[1opf	'itter

+ checks that resonance contributions are negligible away from resonance

see also

`15`16]

EFiT`19]

[SFitter `19]

[Durieux et al. `19]

indirect top sector constraints

$$\mathcal{L} \supset \bar{t}\gamma^{\mu} \left[g_{L}^{t}P_{L} + g_{R}^{t}P_{R}\right] tZ_{\mu} \\ + \bar{b}\gamma^{\mu} \left[g_{L}^{b}P_{L} + g_{R}^{b}P_{R}\right] bZ_{\mu} \\ + \left(\bar{b}\gamma^{\mu} \left[V_{L}P_{L} + V_{R}P_{R}\right] tW_{\mu}^{+} + \text{h.c.}\right) \\ V_{L} = -\frac{g}{\sqrt{2}} \left[1 + \delta_{W,L}\right] \quad \text{etc.} \\ V_{L} \in \left[-0.029, 0.019\right], \quad \delta_{W,R} \in \left[-0.009, 0.009\right], \\ \delta_{Z,L} \in \left[-0.639, 0.277\right], \quad \delta_{Z,R}^{t} \in \left[-1.566, 1.350\right]. \\ \mathbf{W}_{L} \in \left[-0.025, 0.02\right], \quad \mathbf{wodel \ correlations} \\ \delta_{W,R} \in \left[-0.0014, 0.0013\right], \\ \delta_{Z,R} \in \left[-0.33, 0.37\right] \\ \mathbf{w}_{L} = \left[-0.33, 0.37\right] \\$$

- existing direct top partner constraints in the range of $\gtrsim 1.5 \text{ TeV}$ [Matsedonskyi, Panico, Wulzer`15]
- theoretical uncertainties is main sensitivity limitation, adding additional channels does not change this picture dramatically

indirect top sector constraints 0% theo. uncertainty 5000 1% theo. uncertainty optimistic extrapolations $\max\left(m_T^{\mathrm{excluded}}
ight)$ [GeV] 2% theo. uncertainty provide indirect sensitivity up 4000 100 TeV, 30/ab to about 5 TeV 3000 2000 80% 70% 90% 99% $\mathrm{BR}(T \to tZ) > \mathrm{BR}(T \to tH)$ Reduction of systematic uncertainties $BR(T \rightarrow tH) > BR(T \rightarrow tZ)$ 100 direct top partner searches in electroweak channels S/\sqrt{B} 10 providing direct sensitivity up to 8 TeV [de Simone et al. `14] [Azatov et al. `14] [Matsedonskyi et al. `14] FCC 30/ab [Golling et al. `16] 0.1 [Barducci et al. `17] $10\,000$ 20004000 6000 8000 [Li et al. 19] $m_T \,[\text{GeV}]$ 30

• EFT @ colliders progress has been rapid

- matching, validity re:momentum coverage at hadron machines
- but no sensitivity when uncertainties are large
- uncertainties/deviations crucial for continued EFT efforts to be fruitful; adopt UV inspired-restrictions as way out?
- Opportunity to link the Higgs/top sector to new physics
 - cure SM shortcomings (CP violation, hierarchy, DM, ...)
 - (multi-)Higgs/(multi-)top production as an avenue for BSM
 - LHC not enough to achieve this in full glory