Simulating and unfolding LHC events with generative networks

OSU - HEP seminar

Anja Butter

ITP, Universität Heidelberg

The need for new physics

The need for new physics

Era of data

Precision simulations with limited resources

[1807.11501] Cieri, Chen, Gehrmann, Glover, Huss

Precision simulations with limited resources

How can ML help analyzing data

- 1.0 Classification/Regression
 - \rightarrow Label data, eg. Signal vs Background

minimize
$$L = (y_{true} - y_{output})^2$$

How can ML help analyzing data

- 1.0 Classification/Regression
 - \rightarrow Label data, eg. Signal vs Background

minimize
$$L = (y_{true} - y_{output})^2$$

How can ML help analyzing data

- 1.0 Classification/Regression
 - \rightarrow Label data, eg. Signal vs Background

minimize $L = (y_{true} - y_{output})^2$

+ low level observables + efficient training

Why now? \rightarrow GPUs

 \rightarrow new algorithms [convolutional networks]

Comparative top tagging study

[1707.08966] G. Kasieczka, et al.

- $\rightarrow\,$ Other applications: jet calibration, particle identification, ...
- \rightarrow Open questions: precision, uncertainties, visualization

How can ML help increasing precision

- ML 2.0 Generative models
 - \rightarrow Can we simulate new data?

1. Generate phase space points

2. Calculate event weight

$$w_{event} = f(x_1, Q^2) f(x_2, Q^2) \times \mathcal{M}(x_1, x_2, p_1, \dots, p_n) \times J(p_i(r))^{-1}$$

3. Unweighting via importance sampling \rightarrow optimal for $w \approx 1$

... or training directly on event samples

Event generation

Generating 4-momenta

• $Z > II$, $pp > jj$, $pp > t\bar{t}$ +decay
[1901.00875] Otten et al. VAE & GAN
[1901.05282] Hashemi et al. GAN
[1903.02433] Di Sipio et al. GAN
[1903.02556] Lin et al. GAN
[1907.03764, 1912.08824] Butter et al. GAN
[1912.02748] Martinez et al. GAN
[2001.11103] Alanazi et al. GAN
[2011.13445] Stienen et al. NF
[2012.07873] Backes et al. GAN
[2101.08944] Howard et al. VAE

Detector simulation

- Jet images
- Fast calorimeter simulation

[1701.05927] de Oliveira et al. GAN
[1705.02355, 1712.10321] Paganini et al. GAN
[1802.03325, 1807.01954] Erdmann et al. GAN
[1805.00850] Musella et al. GAN
[1805.00850] T-PUB-2018.001, ATLAS-SIM-2019-004, ATL-SOFT-PUB-2018-001, ATLAS-SIM-2019-004, ATL-SOFT-PROC-2019-007] ATLAS VAE & GAN
[1909.01359] Carazza and Dreyer GAN
[1912.06794] Belayneh et al. GAN
[2005.05334, 2102.12491] Buhmann et al. VAE
[2009.03796] Diefenbacher et al. GAN
[2009.1017] Lu et al.

NO claim to completeness!

Generative Adversarial Networks

 $\begin{array}{ll} \textbf{Discriminator} & {}_{[D(x_r) \ \rightarrow \ 1, \ D(x_c) \ \rightarrow \ 0]} \\ L_D = \left\langle -\log D(x) \right\rangle_{x \sim P_{Truth}} + \left\langle -\log(1 - D(x)) \right\rangle_{x \sim P_{Gen}} \rightarrow -2\log 0.5 \end{array}$

 $\begin{array}{l} \textbf{Generator} \quad {}_{[D(x_c) \rightarrow 1]} \\ L_G = \big\langle -\log D(x) \big\rangle_{x \sim P_{Gen}} \end{array}$

$\Rightarrow \text{ Nash Equilibrium} \\ \Rightarrow \text{ New statistically independent samples} \\$

What is the statistical value of GANned events?[2008.06545]

- Camel function
- Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

$$\mathsf{MSE}^* = \sum_{j=1}^{N_{\mathsf{quant}}} \left(p_j - rac{1}{N_{\mathsf{quant}}}
ight)^2$$

What is the statistical value of GANned events?[2008.06545]

Camel function

Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

$$\mathsf{MSE}^* = \sum_{j=1}^{N_{\mathsf{quant}}} \left(p_j - \frac{1}{N_{\mathsf{quant}}} \right)^2$$

Sparser data \rightarrow bigger amplification

How to GAN LHC events [1907.03764]

- $t\overline{t} \rightarrow 6$ quarks
- 18 dim output
 - external masses fixed
 - no momentum conservation
- + Flat observables \checkmark
- Systematic undershoot in tails [10-20% deviation]

Correlations

Correlations

Reaching precision (preliminary)

- 1. Representation p_T, η, ϕ
- 2. Momentum conservation
- 3. Resolve $\log p_T$
- 4. Regularization: spectral norm
- 5. Batch information
- $\rightarrow~1\%$ precision \checkmark

Next step automization

W + 2 jets

Information in distributions

(what we want)

Information in weight (what we have)

The unweighting bottleneck

- High-multiplicity / higher-order ightarrow unweighting efficiencies < 1%
- \rightarrow Simulate conditions with naive Monte Carlo generator ME by Sherpa, parton densities from LHAPDF, Rambo-on-diet

Training on weighted events

Information contained in distribution or event weights

Train on weighted events

Training on weighted events

Information contained in distribution or event weights

$$\mathcal{L}_{D} = ig\langle -w \log D(x) ig
angle_{x \sim \mathcal{P}_{Truth}} + ig\langle -\log(1-D(x)) ig
angle_{x \sim \mathcal{P}_{Gen}}$$

Training on weighted events

Information contained in distribution or event weights

$$\mathcal{L}_{D} = ig\langle -w \log D(x) ig
angle_{x \sim \mathcal{P}_{Truth}} + ig\langle -\log(1-D(x)) ig
angle_{x \sim \mathcal{P}_{Gen}}$$

normalizing flow: B. Stienen, R. Verheyen [2011.13445]

Anja Butter

uwGAN results

Populates high energy tails

Large amplification wrt. unweighted data!

Short summary

We can ..

 \rightarrow use GANs to learn event distributions and correlations

 \rightarrow amplify underlying statistics

 \rightarrow achieve precision

 \rightarrow train directly on weighted events

 \rightarrow boost precision simulations with generative networks

Can we invert the simulation chain?

Invertible networks

[1808.04730] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner,

E. W. Pellegrini, R. S. Klessen, L. Maier-Hein, C. Rother, U. Köthe

+ Bijective mapping
+ Tractable Jacobian
+ Fast evaluation in both directions
+ Arbitrary networks s and t

Inverting detector effects

multi-dimensional \checkmark bin independent \checkmark statistically well defined ?

Including stochastical effects

Sample r_d for fixed detector event How often is Truth included in distribution quantile?

Problem: arbitrary balance of many loss functions

Taking a different angle

Given an event x_d , what is the probability distribution at parton level? \rightarrow sample over r, condition on x_d

$$x_p \xleftarrow{g(x_p, f(x_d))}{\longleftarrow} r$$

$$\leftarrow \text{unfolding: } \bar{g}(r, f(x_d))$$

Taking a different angle

Given an event x_d , what is the probability distribution at parton level? \rightarrow sample over r, condition on x_d

$$x_p \xleftarrow{g(x_p, f(x_d))}{\longleftarrow} r$$

$$\leftarrow \text{unfolding: } \bar{g}(r, f(x_d))$$

 \rightarrow Training: Maximize posterior over model parameters

$$\begin{split} L &= -\langle \log p(\theta | x_p, x_d) \rangle_{x_p \sim P_p, x_d \sim P_d} \\ &= -\langle \log p(x_p | \theta, x_d) \rangle_{x_p \sim P_p, x_d \sim P_d} - \log p(\theta) + \text{const.} \leftarrow \text{Bayes} \\ &= -\left\langle \log p(\bar{g}(x_p, x_d)) + \log \left| \frac{\partial \bar{g}(x_p, x_d)}{\partial x_p} \right| \right\rangle - \log p(\theta) \leftarrow \text{change of var} \\ &= \langle 0.5 || \bar{g}(x_p, f(x_d)) ||_2^2 - \log |J| \rangle_{x_p \sim P_p, x_d \sim P_d} - \log p(\theta) \end{split}$$

 \rightarrow Jacobian of bijective mapping

Cross check distributions

Condition INN on detector data [2006.06685]

$$x_p \xleftarrow{g(x_p, f(x_d))}{\longleftarrow \text{ unfolding: } \bar{g}(r, f(x_d))} r$$

 $\text{Minimizing } L = \left< 0.5 ||\bar{g}(x_p, f(x_d)))||_2^2 - \log |J| \right>_{x_p \sim P_p, x_d \sim P_d} - \log p(\theta)$

multi-dimensional $\checkmark~$ bin independent $\checkmark~$ statistically well defined $\checkmark~$

Inverting the full event I

- $pp > WZ > q\bar{q}I^+I^- + ISR$
- \rightarrow ISR leads to large fraction of 2/3/4 jet events
 - Train and test on exclusive channels

Inverting the full event II

Going beyond unfolding

Infere splitting kernels

We can use ML ...

 \ldots to enable precision simulations in forward direction

... to turn weighted into unweighted events

... to invert the simulation chain statistically

... for fun and precision :)

BACK UP

Amplification

5-dim sphere

Noise extended INN

Model dependence

The GAN challenge

or Why do we need regularization?

Solutions: Additional loss or restricted network parameters

Improving GAN training

Solutions

- Regularization of the discriminator, eg. gradient penalty [Ghosh, Butter et al., ...]
- Modified training objective:
 - Wasserstein GAN (incl. gradient penalty) [Lin et al., Erdmann et al., ...]
 - Least square GAN (LSGAN) [Martinez et al., ...]
 - MMD-GAN [Otten et al., ...]
 - MSGAN [Datta et al., ...]
 - Cycle GAN [Carazza et al., ...]
- Use of symmetries [Hashemi et al., ...]
- Whitening of data [Di Sipio et al., ...]
- Feature augmentation [Alanazi et al., ...]