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The need for new physics
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Era of data
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Precision simulations with limited resources

L

Matrix element

Parton shower
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Detector simulation
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Figure 2: Higgs boson rapidity distribution. Figures from Refs. [19, 20].

�(scale) �(PDF-TH) �(EW) �(t, b, c) �(1/mt) �(PDF) �(↵s)

+0.10 pb
�1.15 pb ±0.56 pb ±0.49 pb ±0.40 pb ±0.49 pb ± 0.89 pb +1.25 pb

�1.26 pb

+0.21%
�2.37% ±1.16% ±1% ±0.83% ±1% ±1.85% +2.59%

�2.62%

Table 1: Status of the theory uncertainties on Higgs boson production in gluon fusion at
p

s = 13 TeV. The table is taken from Ref. [83] and the LHC Higgs WG1 TWiki, with �(trunc)

removed after the work of Ref. [18]. The value for �(EW) was a rough estimate when Ref. [83]

was published. Meanwhile the order of magnitude has been confirmed by the calculations of

Refs. [84–88].

Two-loop electroweak corrections to Higgs production in gluon fusion were

calculated in Refs. [89, 90, 78]. The mixed QCD-EW corrections which ap-

pear at two loops for the first time were calculated directly in Ref. [91], where

however the unphysical limit mZ , mW � mH was employed. In Refs. [84–86],

this restriction was lifted and the mixed QCD-EW corrections at order ↵2↵2
s

were calculated, where the real radiation contributions were included in the soft

gluon approximation. It was found that the increase in the total cross section

between pure NLO QCD and NLO QCD+EW is about 5.3%. The calculation

of Ref. [86] has been confirmed by Ref. [87], where also the hard real radiation

was calculated, in the limit of small vector boson masses, corroborating the va-

10

[1807.11501] Cieri, Chen, Gehrmann, Glover, Huss

Speed = Precision
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Precision simulations with limited resources

L

Matrix element

Parton shower

Hadronization

Detector simulation
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Speed = Precision
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How can ML help analyzing data

• 1.0 Classification/Regression
→ Label data, eg. Signal vs Background

minimize L = (ytrue − youtput)
2

+ low level observables
+ efficient training

Why now?→ GPUs

→ new algorithms [convolutional networks]

Anja Butter Simulating and unfolding LHC events with generative networks 5 / 30



How can ML help analyzing data

• 1.0 Classification/Regression
→ Label data, eg. Signal vs Background

minimize L = (ytrue − youtput)
2

+ low level observables
+ efficient training

Why now?→ GPUs

→ new algorithms [convolutional networks]

Anja Butter Simulating and unfolding LHC events with generative networks 5 / 30



How can ML help analyzing data

• 1.0 Classification/Regression
→ Label data, eg. Signal vs Background

minimize L = (ytrue − youtput)
2

+ low level observables
+ efficient training

Why now?→ GPUs

→ new algorithms [convolutional networks]

Anja Butter Simulating and unfolding LHC events with generative networks 5 / 30



Comparative top tagging study

[1707.08966] G. Kasieczka, et al.

→ Other applications: jet calibration, particle identification, ...

→ Open questions: precision, uncertainties, visualization
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How can ML help increasing precision

• ML 2.0 Generative models

→ Can we simulate new data?

Fast evaluation

more events

=

higher order

Precision

Speed

modular
speed up

wrapper new concepts
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Boosting standard event generation...

1. Generate phase space points

2. Calculate event weight

wevent = f (x1,Q
2)f (x2,Q

2) × M(x1, x2, p1, . . . pn) × J(pi (r))−1

3. Unweighting via importance sampling
→ optimal for w ≈ 1
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Boosting standard event generation...

Matrix element

wevent = f (x1,Q
2)f (x2,Q

2) × M(x1, x2, p1, . . . pn) × J(pi (r))−1

PDF Phase space mapping
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Boosting standard event generation...

Matrix element

wevent = f (x1,Q
2)f (x2,Q

2) × M(x1, x2, p1, . . . pn) × J(pi (r))−1

- NNPDF since 2002(!)
- S. Carrazza, J. Cruz-Martinez
[1907.05075]

Phase space mapping
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Boosting standard event generation...

Figure 5: Comparison of a single neural network (left) vs. our ensemble approach (right)
in estimating the differential cross-section against y, where y is the minimum yij as ordered
by pT . Data is normalised to the maximum Njet bin value. Uncertainty bands denote
1 s.d. calculated over 20 trained models (red and green) and Monte Carlo error on the
Njet result (blue). – 13 –

- Amplitude estimation
- S. Badger, J. Bullock [2002.07516]
- J. Bendavid [1707.00028]

wevent = f (x1,Q
2)f (x2,Q

2) × M(x1, x2, p1, . . . pn) × J(pi (r))−1

- NNPDF since 2002(!)
- S. Carrazza, J. Cruz-Martinez
[1907.05075]

Phase space mapping
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Boosting standard event generation...

Figure 5: Comparison of a single neural network (left) vs. our ensemble approach (right)
in estimating the differential cross-section against y, where y is the minimum yij as ordered
by pT . Data is normalised to the maximum Njet bin value. Uncertainty bands denote
1 s.d. calculated over 20 trained models (red and green) and Monte Carlo error on the
Njet result (blue). – 13 –

- Amplitude estimation
- S. Badger, J. Bullock [2002.07516]
- J. Bendavid [1707.00028]

wevent = f (x1,Q
2)f (x2,Q

2) × M(x1, x2, p1, . . . pn) × J(pi (r))−1

- NNPDF since 2002(!)
- S. Carrazza, J. Cruz-Martinez
[1907.05075]
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(a) 3-jet production

10�2 10�1 100 101 102

w

10�5

10�4

10�3

10�2

10�1

100

n
or

m
al

is
ed

d
is

tr
ib

u
ti
on

Uniform

Vegas

NN

1.0 1.5 2.0

0

1

(b) 4-jet production

Figure 4: Event weight distributions for sampling the total cross section for gg!n jets for
p

s = 1 TeV
with N = 106 points, comparing VEGAS optimisation, NN-based optimisation and an unoptimised
(“Uniform”) distribution. Note that we now use a logarithmic scale for the x axis. The inset plot
in (b) shows the peak region in more detail and using a linear scale.

an upcoming study [36], where increasing the final-state multiplicity (and hence the number of channels) in
V + jets production also leads to a rapid reduction in the gain factor.

However, the results for the top quarks and the 3-jet production are promising and indicate that con-
ventional optimisers such as VEGAS can potentially be outperformed by NN-based approaches also for more
complex problems in the future. To this end the computational challenges outlined above need to be ad-
dressed. In future research we will therefore aim to extend the range in final-state multiplicity while keeping
the training costs at an acceptable level, and—if successful—to implement the new sampling techniques
within the SHERPA general-purpose event generator framework. A starting point should be the further study
and comparison of alternative ways to integrate our NN approach within multi-channel sampling, beginning
with our ansatz and the one proposed in [36], to find out if the scaling behaviour can be optimised. On the
purely NN side, the exploration of possible extensions or alternatives to piecewise-quadratic coupling layers
is promising, such as [51]. Also adversarial training has the potential to reduce training times significantly.
The limitation of the statistical accuracy by a large number of zero-weight events found in the jet-production
examples furthermore suggests that it is worthwhile to investigate the construction of optimised importance
sampling maps that better respect common phase space cuts, or alternatively to modify the optimisation
procedure to further reduce the generation of points outside the fiducial phase space volume.
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- Learn phase space mapping (→
w ≈ 1)
- Gao et al. [2001.10028]
- Bothmann et al. [2001.05478]
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... or training directly on event samples

Event generation
• Generating 4-momenta

• Z > ll , pp > jj , pp > tt̄+decay
[1901.00875] Otten et al. VAE & GAN

[1901.05282] Hashemi et al. GAN

[1903.02433] Di Sipio et al. GAN

[1903.02556] Lin et al. GAN

[1907.03764, 1912.08824] Butter et al. GAN

[1912.02748] Martinez et al. GAN

[2001.11103] Alanazi et al. GAN

[2011.13445] Stienen et al. NF

[2012.07873] Backes et al. GAN

[2101.08944] Howard et al. VAE

Detector simulation
• Jet images

• Fast calorimeter simulation
[1701.05927] de Oliveira et al. GAN

[1705.02355, 1712.10321] Paganini et al. GAN

[1802.03325, 1807.01954] Erdmann et al. GAN

[1805.00850] Musella et al. GAN

[ATL-SOFT-PUB-2018-001, ATLAS-SIM-2019-004,
ATL-SOFT-PROC-2019-007] ATLAS VAE & GAN

[1909.01359] Carazza and Dreyer GAN

[1912.06794] Belayneh et al. GAN

[2005.05334, 2102.12491] Buhmann et al. VAE

[2009.03796] Diefenbacher et al. GAN

[2009.14017] Lu et al.

NO claim to completeness!
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Generative Adversarial Networks

Discriminator [D(xT ) → 1, D(xG ) → 0]

LD =
〈
− logD(x)

〉
x∼PTruth

+
〈
− log(1−D(x))

〉
x∼PGen

→ −2 log 0.5

Generator [D(xG ) → 1]

LG =
〈
− logD(x)

〉
x∼PGen

⇒ Nash Equilibrium
⇒ New statistically independent samples
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What is the statistical value of GANned events?[2008.06545]

• Camel function

• Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

MSE∗ =

Nquant∑

j=1

(
pj −

1

Nquant

)2
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What is the statistical value of GANned events?[2008.06545]

• Camel function

• Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

MSE∗ =

Nquant∑

j=1

(
pj −

1

Nquant

)2

→ Amplification factor 2.5

Sparser data → bigger amplification
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How to GAN LHC events [1907.03764]

• tt̄ → 6 quarks

• 18 dim output
• external masses fixed
• no momentum conservation

+ Flat observables X

– Systematic undershoot in tails [10-20% deviation]
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Correlations

X
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Correlations

X
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Reaching precision (preliminary)

1. Representation pT , η, φ

2. Momentum conservation

3. Resolve log pT

4. Regularization: spectral norm

5. Batch information

→ 1% precision X

Next step automization

W + 2 jets
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Information in distributions
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The unweighting bottleneck

• High-multiplicity / higher-order → unweighting efficiencies < 1%

→ Simulate conditions with naive Monte Carlo generator
ME by Sherpa, parton densities from LHAPDF, Rambo-on-diet

pp → µ+µ− with mµµ > 50 GeV

10−33 10−28 10−23 10−18 10−13 10−8 10−3

weight

100

101

102

103

104

#
ev

en
ts

→ unweighting efficieny 0.2%
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Training on weighted events
Information contained in distribution or event weights
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〉
x∼PGen

normalizing flow: B. Stienen, R. Verheyen [2011.13445]
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uwGAN results
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Populates high energy tails

Large amplification wrt. unweighted data!
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Short summary

We can ..

→ use GANs to learn event distributions and correlations

→ amplify underlying statistics

→ achieve precision

→ train directly on weighted events

→ boost precision simulations with generative networks

Anja Butter Simulating and unfolding LHC events with generative networks 19 / 30



Can we invert the simulation chain?

What we
want to know

What we
measure or simulate

wish list: � multi-dimensional

� bin independent

� statistically well defined
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Invertible networks

(
xpart

) Pythia,Delphes:g→
←−−−−−−−−−−−−−−−−→

← unfolding:ḡ

(
xdet
)

[1808.04730] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner,

E. W. Pellegrini, R. S. Klessen, L. Maier-Hein, C. Rother, U. Köthe

+ Bijective mapping

+ Tractable Jacobian

+ Fast evaluation in both directions

+ Arbitrary networks s and t
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Inverting detector effects
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multi-dimensional X bin independent X statistically well defined ?
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• pp → ZW → (ll)(jj)

• Train: parton → detector

• Evaluate: parton ← detector
W

Z

j

j

ℓ+

ℓ−



Including stochastical effects
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• Problem: arbitrary balance of many loss functions
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Taking a different angle

Given an event xd , what is the probability distribution at parton level?
→ sample over r , condition on xd

xp
g(xp,f (xd ))→

←−−−−−−−−−−−−−−−−→
← unfolding: ḡ(r ,f (xd ))

r

→ Training: Maximize posterior over model parameters

L = −〈log p(θ|xp, xd)〉xp∼Pp,xd∼Pd

= −〈log p(xp|θ, xd)〉xp∼Pp,xd∼Pd
− log p(θ) + const. ← Bayes

= −
〈

log p(ḡ(xp, xd)) + log

∣∣∣∣
∂ḡ(xp, xd)

∂xp

∣∣∣∣
〉
− log p(θ)← change of var

=
〈
0.5||ḡ(xp, f (xd))||22 − log |J|

〉
xp∼Pp,xd∼Pd

− log p(θ)

→ Jacobian of bijective mapping

Anja Butter Simulating and unfolding LHC events with generative networks 24 / 30



Taking a different angle

Given an event xd , what is the probability distribution at parton level?
→ sample over r , condition on xd

xp
g(xp,f (xd ))→

←−−−−−−−−−−−−−−−−→
← unfolding: ḡ(r ,f (xd ))
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Cross check distributions
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Condition INN on detector data [2006.06685]

xp
g(xp,f (xd ))→

←−−−−−−−−−−−−−−−−→
← unfolding: ḡ(r ,f (xd ))

r

Minimizing L =
〈
0.5||ḡ(xp , f (xd )))||22 − log |J|

〉
xp∼Pp ,xd∼Pd

− log p(θ)

10 15 20 25 30 35 40 45 50
pT,q1

[GeV]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ev
en

ts
n

or
m

al
iz

ed

cINN eINN

FCGAN

single detector event
3200 unfoldings

P
arton

T
ru

th

0.0 0.2 0.4 0.6 0.8 1.0
quantile pT,q1

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

of
ev

en
ts

cI
N
N

eINN FCGAN

multi-dimensional X bin independent X statistically well defined X
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Inverting the full event I

• pp >WZ > qq̄l+l− + ISR

→ ISR leads to large fraction of 2/3/4 jet events

• Train and test on exclusive channels
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Inverting the full event II

pp >WZ > qq̄l+l− + ISR

Train on inclusive dataset

Evaluate
exclusive 2/3/4 jet channels
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Going beyond unfolding

Infere splitting kernels

Pqq (z, y)

= CF

[
Dqq

2z(1 − y)

1 − z(1 − y)
+ Fqq (1 − z) + Cqqyz(1 − z)

]
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Same principle for inference

Measure parton shower parametersSciPost Physics Submission

cINN

Summary
net

Sherpa
jets

QCD
model

Gaussian

h

{xm}

m z

g(m; h) P (z)

Training

cINN

Summary
net

LHC
jets

QCD
measurement

Gaussian
sampling

Inference

h

{x}

m z

P (m|{x}) ḡ(z; h) z ⇠ P (z)

Figure 1: BayesFlow setup of the cINN for training and inference [47].

This loss guarantees that the networks recover the true posterior under perfect conver-
gence [47].

Inference BayesFlow [47] provides a cINN framework which we can use to measure
fundamental QCD parameters. From the inversion of a detector simulation and QCD
radiation [63] we know how, given a single detector-level event, the cINN generates samples
from a probability distribution over the phase space of the hard scattering. For the jet
inference presented in this paper, the BayesFlow setup corresponds to this unfolding setup,
in which we replace the parton-level phase space with the model parameter space and the
detector-level phase space with the simulated data. In Fig 1 we give a graphical illustration
of the inference setup, for the training and the inference phases.

To train the BayesFlow networks we use the fact that we can simulate an arbitrary
number of jets fast. This allows us to employ mini-batch gradient descent to approximate
the expectation in the above optimization criterion via its Monte-Carlo empirical mean.
Moreover, if we train the networks on jet samples of varying size, we can use them on
data samples with any size, as long as this size is within the domain of the pre-defined
distribution over sample sizes. The networks will approximate the correct push-forward
from a given prior P (m) in model space to a posterior P (m|x) contingent on a set of
measurements x. When the test sample size leaves the training domain the posterior
accuracy will degrade. In case we need to analyse larger data sets we can then follow the
Bayesian logic behind the BayesFlow framework [47] and use the posterior from an earlier
measurement as a prior.

3 Idealized jet measurements

Before applying BayesFlow to LHC jets including hadronization and detector simulation,
we define our theory assumptions and test the corresponding model on an idealized data
set using a toy shower [67]. That will give us an idea what kind of measurement we could
aim for and will also allow for some simple benchmarking. We have checked that this toy
shower agrees with the full Sherpa shower, except that we do not include the e↵ects from
the 2-loop cusp anomalous dimension.

Theory setup The physics goal in our paper is to understand the QCD splittings build-
ing up parton showers. In the leading collinear approximation these kernels relate the

5
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We can use ML ...

... to enable precision simulations in forward direction

... to turn weighted into unweighted events

... to invert the simulation chain statistically

... for fun and precision :)
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BACK UP
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Amplification

5-dim sphere
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Noise extended INN
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Model dependence

Training on SM dataset
Evaluation on W ’ dataset
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The GAN challenge
or

Why do we need regularization?
Which Training Methods for GANs do actually Converge?

pD = �0 p✓ = �✓

D (x)

x

y

(a) t = t0

pD = �0 p✓ = �✓

D (x)

x

y

(b) t = t1

Figure 1. Visualization of the counterexample showing that gra-
dient descent based GAN optimization is not always convergent:
(a) In the beginning, the discriminator pushes the generator towards
the true data distribution and the discriminator’s slope increases.
(b) When the generator reaches the target distribution, the slope of
the discriminator is largest, pushing the generator away from the
target distribution. This results in oscillatory training dynamics
that never converge.

than 1, the training algorithm will converge to (✓⇤, ⇤) with
linear rate O(|�max|k) where �max is the eigenvalue of
F 0(✓⇤, ⇤) with the biggest absolute value. If all eigenval-
ues of F 0(✓⇤, ⇤) are on the unit circle, the algorithm can
be convergent, divergent or neither, but if it is convergent
it will generally converge with a sublinear rate. A similar
result (Khalil, 1996; Nagarajan & Kolter, 2017) also holds
for the (idealized) continuous system

✓
✓̇(t)

 ̇(t)

◆
=

✓
�r L(✓, )
r✓L(✓, )

◆
(3)

which corresponds to training the GAN with infinitely small
learning rate: if all eigenvalues of the Jacobian v0(✓⇤, ⇤)
at a stationary point (✓⇤, ⇤) have negative real-part, the
continuous system converges locally to (✓⇤, ⇤) with lin-
ear convergence rate. On the other hand, if v0(✓⇤, ⇤) has
eigenvalues with positive real-part, the continuous system
is not locally convergent. If all eigenvalues have zero real-
part, it can be convergent, divergent or neither, but if it is
convergent, it will generally converge with a sublinear rate.

For simultaneous gradient descent linear convergence can
be achieved if and only if all eigenvalues of the Jacobian
of the gradient vector field v(✓, ) have negative real part
(Mescheder et al., 2017). This situation was also considered
by Nagarajan & Kolter (2017) who examined the asymptotic
case of step sizes h that go to 0 and proved local convergence
for absolutely continuous generator and data distributions
under certain regularity assumptions.

2.2. The Dirac-GAN

Simple experiments, simple theorems are the building
blocks that help us understand more complicated systems.

Ali Rahimi - Test of Time Award speech, NIPS 2017

In this section, we describe a simple yet prototypical coun-
terexample which shows that in the general case unregular-
ized GAN training is neither locally nor globally convergent.

Definition 2.1. The Dirac-GAN consists of a (univariate)
generator distribution p✓ = �✓ and a linear discriminator
D (x) =  · x. The true data distribution pD is given by a
Dirac-distribution concentrated at 0.

Note that for the Dirac-GAN, both the generator and the
discriminator have exactly one parameter. This situation
is visualized in Figure 1. In this setup, the GAN training
objective (1) is given by

L(✓, ) = f( ✓) + f(0) (4)

While using linear discriminators might appear restrictive,
the class of linear discriminators is in fact as powerful as
the class of all real-valued functions for this example: when
we use f(t) = � log(1 + exp(�t)) and we take the supre-
mum over  in (4), we obtain (up to scalar and additive
constants) the Jensen-Shannon divergence between p✓ and
pD. The same holds true for the Wasserstein-divergence,
when we use f(t) = t and put a Lipschitz constraint on the
discriminator (see Section 3.1).

We show that the training dynamics of GANs do not con-
verge in this simple setup.

Lemma 2.2. The unique equilibrium point of the training
objective in (4) is given by ✓ =  = 0. Moreover, the
Jacobian of the gradient vector field at the equilibrium point
has the two eigenvalues ±f 0(0) i which are both on the
imaginary axis.

We now take a closer look at the training dynamics produced
by various algorithms for training the Dirac-GAN. First, we
consider the (idealized) continuous system in (3): while
Lemma 2.2 shows that the continuous system is generally
not linearly convergent to the equilibrium point, it could
in principle converge with a sublinear convergence rate.
However, this is not the case as the next lemma shows:

Lemma 2.3. The integral curves of the gradient vector field
v(✓, ) do not converge to the Nash-equilibrium. More
specifically, every integral curve (✓(t), (t)) of the gradient
vector field v(✓, ) satisfies ✓(t)2 +  (t)2 = const for all
t 2 [0,1).

Note that our results do not contradict the results of Nagara-
jan & Kolter (2017) and Heusel et al. (2017): our example
violates Assumption IV in Nagarajan & Kolter (2017) that
the support of the generator distribution is equal to the sup-
port of the true data distribution near the equilibrium. It
also violates the assumption2 in Heusel et al. (2017) that
the optimal discriminator parameter vector is a continuous
function of the current generator parameters. In fact, unless

2This assumption is usually even violated by Wasserstein-
GANs, as the optimal discriminator parameter vector as a function
of the current generator parameters can have discontinuities near
the Nash-equilibrium. See Section 3.1 for details.

Solutions:
Additional loss or restricted network parameters
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Improving GAN training

Solutions
• Regularization of the discriminator, eg. gradient penalty [Ghosh, Butter et al.,

...]

• Modified training objective:
• Wasserstein GAN (incl. gradient penalty) [Lin et al., Erdmann et al., ...]

• Least square GAN (LSGAN) [Martinez et al., ...]

• MMD-GAN [Otten et al., ...]

• MSGAN [Datta et al., ...]

• Cycle GAN [Carazza et al., ...]

• Use of symmetries [Hashemi et al., ...]

• Whitening of data [Di Sipio et al., ...]

• Feature augmentation [Alanazi et al., ...]
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