Graph Neural Network: Its applications to
constrain BSM models and EFTs

Akanksha Bhardwaj

Oklahoma State University

JHEP 08 (2021) 080 O. Atkinson, A.B, C. Englert, V.Ngairangbam, M. Spannowsky

JHEP 04 (2022) 137 O. Atkinson, A.B, S. Brown, C. Englert, D. Miller, P. Stylianou



Outline

e Graph Neural Networks (GNNs) are powerful deep learning algorithm for automatic feature
extraction on graph structured data
o General enough for non-Euclidean physics data
o Can encode pairwise relation through edge features
e Graph Autoencoder for unsupervised detection of non-QCD jets:
o design a symmetric decoder capable of simultaneously reconstructing edge features and
node features
e Application of GNNs in a supervised scenario : an SMEFT analysis of top-antitop pair production
and its decay
o Multiclass classification of thirteen independent Wilson coefficients switched on

simultaneously



Artificial Neural Networks




What are Graphs?

e Asetof objects, and the relations between a pair of objects are naturally expressed as a graph.

e Graph Neural Networks (GNNs) operate on graph data

e To further describe each node, edge or the entire graph, we can store information in each of these

pieces of the graph.

o  Vertex (or node) embedding

o  Edge (or link) attributes and embedding

o  Global (or graph) embedding
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Message passing operation

. Message Passing
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ode features
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Jet Substructure at LHC

Dominantly Soft or collinear
(22 << 2 0r 012 — 0)

z; is relative hardness

for hadronic colliders: z; = fZT .
Y pr
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Jet Image of a boosted Top Quark
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Autoencoders

Encoder E(Bg, x)
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//

Decoder D(®©p, z)

Input x
Latent Rep. z
Output x

Autoencoders are neural networks that map an input space to a bottleneck dimension (the
latent dimension) and then back again to a space identical to the input.




Graph Autoencoder
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graph.




Graph Autoencoder

Decoder
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Latent dimension scan
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Loss distribution for latent dimension 6
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Loss correlations
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Shared weights for all
edges per layer
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Loss correlation
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Graph Neural Network : Application to EFT in
supervised learning framework



Effective Field Theory

e Lack of experimental evidence of new physics may indicate a mass gap
between SM and BSM scales.

e SMEFT Lagrangian

o)
Loviprr = Lsp+ Y Y Aik_40;(f)
>4k

e Top-down:
o Integrate out heavy BSM states of UV-complete theory.
o Match Wilson Coefficients (WCs) to variables of full theory




Effective Field Theory

Bottom-up:
» Agnostically include all allowed operator deformations as an
expansion around A1,

» Truncate the series to and interpret LHC results as bounds on
Wilson Coefficients C* of the operators.

Only one ©®) which is relevant for neutrino physics.

With minimal flavour violation and baryon number conservation
there are 59 operators 0%

16 dimension-6 operators relevant for top physics.

Keep terms in Lagrangian only up to A—2.



Cross Section from SMEFT

Any differential cross section follows:

: (GHC
do = dogy + %dcri + W’-ddij

— |

Interference Cross terms

e [\—4 terms are suppressed, truncate series at A—2
e Differential distributions can be used to quantify allowed range on WCs.
e Optimised selection of signal region can result in improved bounds.

e Anyimprovement for linear case should generalise to A~ terms.



Improving SMEFT results with GNNs

« Focus on process pp — tt — £bbjj + Er
» 13 relevant SMEFT operators in this process.
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Particle event as a graph

1.

Usually graphs are constructed either w.r.t. the distance between the nodes or fully
connected.
Here instead attempt to use systematic procedure to construct physics-inspired graphs from
final states :
a. Impose basic selection criteria on jets, leptons and b-quarks
b. Create nodes for jets, lepton, b-quarks and missing transverse momentum (MTM).
c. Attempt to reconstruct invariant mass of the two W bosons from lepton-MTM and dijet.
d. If reconstructed masses are relatively close to actual W mass create node.

e. Attempt to reconstruct top quarks and create nodes.



Particle events as Graph

Edges are connected according to the decay from their parent particles




Graph Features

Node Features

e Transverse momentum
e Azimuthal angle

e Pseudorapidity

e Energy

e Invariant mass

e Particle Identity

No Edge feature in our set-up

Goal: GNN should utilize the features and graph structure to classify events according to the
operator that gave rise to it or as purely-SM —»  Multi-Class Setup



GNN Architecture

Edge Convolution: Message
e
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Aggregation

e Updates features of vertex i using other nodes in its neighbourhood, N{i}
e Node aggregation is done by taking mean
e ©Eand( arelinear layer

e Graph readout done by taking mean



Two Operator scenario

e Test asimple scenario with only two four fermion operator
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Schematics

Final States

l: {pr,n, ¢, B, m, PID}

Selection t2
Reconstruction
Graph Embedding t

b: {pr,n, ¢,E,m,PID}

Compare with actual
result, (e.g. for SM event
y = {0,0,1}) to optimize
network parameters.

Network Scores
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Training the GNN

Optimize parameters by minimizing categorical cross-entropy function

N classes

L=— > ylogi.
1=1

Optimized hyperparameters & architecture to achieve better convergence.
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Performance of GNN via ROC curve

e Different architectures and embeddings were compared with Receiver Operating Characteristic
curves.

e ROC curves calculated for each operator in a one-vs-rest scheme.

e Additionally calculate curve for overall EFT performance using

P(BSM) = P(O3)¥33) + P(O®)#33) = 1 — P(SM) .
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Probability distribution of the network output

The network essentially separates events into three different regions.
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Fit
* Performed x2 fit using pT (b1) distributions at an extrapolated luminosity 3/ab.

* Cuts on network scores result in improved performance over just the selection cuts.
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Fit-alternative

Can also perform fit on flattened two-dimensional histograms from scores.
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Contours obtained from 2D Histogram

Cutting on the BSM score provides similar contours with the 2D score histogram approach.
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Full Fit constraints with GNN selection

e Extend setup to 13 SMEFT operators relevant to the process.

e  ROC curves indicate the capability of the network to distinguish operators.

True rate
o o
(@)) (0 o]

©
N
T

o
[N
T

Og AUC: 0.644
O AUC: 0.656
0% AUC: 0.640 1
O5® AUC: 0.662
oL AUC: 0.7014
OSB3 AUC: 0.683

O3 AUC: 0.837 ]

0.0 0.2 0.4 0.6
False rate

0.8 1.0

True rate

o
oo
T

o
o
T

o
N
T

o
[
T

OR3% AUC: 0.702
OB AUC: 0.709
SM AUC: 0.673 |
0%, AUC: 0.631
03, AUC: 0.643
OB AUC: 0.682
033 AUC: 0.724

=

0.4

0.6

False rate

0.8 1.0



Baseline analysis

e Performed analysis of CMS (1610.04191) for comparison with results based on GNN score cut.

Distribution Observable Binning
L diiy?| [yl | [0.0,0.2,0.4,0.7,1.0,1.3,1.6,2.5]
ﬁd‘l”;’“ [yt [0.0,0.2,0.4,0.7,1.0,1.3,1.6,2.5]
i |z [0.0,0.2,0.4,0.6,0.9,1.3,2.3]
L d;jg,, p i 0,45, 90,135, 180, 225, 270, 315, 400, 800] GeV
1 dig} P! [0, 45, 90, 135, 180, 225, 270, 315, 400, 800] GeV
o My (300, 375, 450, 530, 625, 740, 850, 1100, 2000] GeV
1 W |y [0.0,0.2,0.4,0.6,0.9,1.3,2.3]
My [300, 375, 450, 625, 850, 2000] GeV
gm " 0,45, 90, 135, 180, 225, 270, 315, 400, 800] GeV
lyR| [0.0,0.5,1.0,1.5,2.5]

Table 1: Distributions included in the fit in this work.
S



Baseline Analysis bounds
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Table 2: Baseline 20 bounds for different luminosities with C; = C; X—Z



Improvements on bounds

2.3fb ! 3ab!

Individual Profiled Individual Profiled

Cc 0.07%  14.53% 0.07% 11.72%
a5 33.74% 34.16%  33.73%  33.82%
c33, 28.29%  32.12%  28.28%  30.76%
c33, 34.86% 35.36%  34.85% 35.57%
(5, 3.50%  3.52% 3.50%  3.23%
c oy 4.35%  4.31% 4.35%  5.01%
C{Du3  63.83% - 63.83%  72.06%
@ 3.45%  3.45% 3.45%  3.39%
G 3.74%  3.80% 3.74%  3.77%
gl 462%  4.63% 4.62%  4.64%
g 3.38%  3.41% 3.38%  3.83%
g = - - 10.57%  40.26%

Table 3: Maximum improvements in 20 bounds via a cut on the ML score.
S



Comments on the results

e GNN performs well in discriminating non-resonant top decay contributions.

e Sizeable improvement when momentum enhancement is present.

e Operators with small improvements are relatively under control via the inclusive rate and baseline
selection.

e Improvements on profiled bounds can be greater than individual ones since a cut on the EFT score

can select a region where the impact of other operators is reduced.

e Improvements should generalise to A terms of cross-section expansion.



Conclusion

e Highly non-trivial task to design representation/algorithms which would achieve optimal
knowledge of the background

e Graphs are an efficient way to represent jets, with the ability to incorporate relational (via
edge-features) information between constituents

e Graph autoencoders can learn both local as well as global features(via edge-reconstruction) of
QCD jets thereby making it a “promising candidate”

e Shown to be robust to complexity bias with the added benefit of an efficient representation
with no inherent Euclidean bias

e Integration of physics-knowledge very much important to achieve the goal of learning

non-trivial topologies of collider events

Thank you



Back up



Applications to HEFT:

e Quartic Gauge-Higgs couplings:

Feynman diagrams contributing to WBF-production of di-Higgs



Fully connected Graph : constrainting the

Node features
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Latent graph-representation
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Latent graph-representation
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Jet dataset details

\/s = 13 TeV pp collisions, MadGraph5
QCD jets (Training and validation): dijet events

Signal benchmarks (Testing):
(i) boosted hadronically-decaying W bosons
(ii) boosted hadronically-decaying top quarks
(iii) a boosted scalar ¢ decaying as ¢ - WTW ™ — 4/, with
mg = 700 GeV
Jets definition and cuts:
» anti-k; algorithm with R = 1.5 with FastJet

» use final state particles after showering and hadronization with
Pythia8

» Require |y| < 2.5 and p7 > 1 TeV

» Select hardest pt jet from each event.

Final input for graph construction: reclustered with anti-kt jet algorithm
into microjets with R = 0.1 and pr > 5 GeV
e



Feature distribution of Microjets
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Feature distribution of Microjets
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NN Conv [1704.01212]

Message-passing:
(1) abF (elJ) x abh(O)

a”h( ) is formed by repeating i_;( ) n times.
FW—Edge-functlon(a Neural network)

Node-readout: Takes the mean of 2 ( ) over all neighbouring nodes J,
and then sums over the a index of the matrlx

bhl(l) Zmea. eN (i) ({abm(l)}> .



https://arxiv.org/abs/1704.01212

Edge Conv[1704.06199]

Message-passing:
"—‘7,(,") - @W_(;;ng) _ ngl)) + ¢W_,-;l(/) ,

©, and ®,, are weights

Node-readout:

ap0*H) — max {2m1
' j'enNi(i){ my )


https://arxiv.org/abs/1704.06199

