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Outline
● Graph Neural Networks (GNNs) are powerful deep learning algorithm for automatic feature 

extraction on graph structured data

○ General enough for non-Euclidean physics data

○ Can encode pairwise relation through edge features

●  Graph Autoencoder for unsupervised detection of non-QCD jets:

○ design a symmetric decoder capable of simultaneously reconstructing edge features and 

node features

● Application of GNNs in a supervised scenario : an SMEFT analysis of top-antitop pair production 

and its decay

○ Multiclass classification of thirteen independent Wilson coefficients switched on 

simultaneously



Artificial Neural Networks
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What are Graphs? 
● A set of objects, and the relations between a pair of objects are naturally expressed as a graph.

● Graph Neural Networks (GNNs) operate on graph data  

● To further describe each node, edge or the entire graph, we can store information in each of these 

pieces of the graph.

○  Vertex (or node) embedding

○  Edge (or link) attributes and embedding

○  Global (or graph) embedding

 



Message passing operation

Neural Network Shared for all edges 

Node features

Edge features

1. Message Passing

2.    Node Readout



Jet Substructure at LHC

QCD jets(Background) Higgs jets (2-prong Signal)
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First splitting/decay at Parton-level

Jet Image of a boosted Top Quark



Autoencoders

Autoencoders are neural networks that map an input space to a bottleneck dimension (the 
latent dimension) and then back again to a space identical to the input.

Train on background (most likely events) 
=> higher reconstruction error on previously 

unseen events  = Anomaly



Graph Autoencoder



Graph Autoencoder



Latent dimension scan 



Loss distribution for latent dimension 6



Loss correlations



Loss correlation 



Graph Neural Network : Application to EFT in 
supervised learning framework



Effective Field Theory
● Lack of experimental evidence of new physics may indicate a mass gap 

between SM and BSM scales.

●  SMEFT Lagrangian

● Top-down:

○ Integrate out heavy BSM states of UV-complete theory.

○ Match Wilson Coefficients (WCs) to variables of full theory



Effective Field Theory



Cross Section from SMEFT
Any differential cross section follows: 

●          terms are suppressed, truncate series at 

● Differential distributions can be used to quantify allowed range on WCs.

● Optimised selection of signal region can result in improved bounds.

● Any improvement for linear case should generalise to          terms.



Improving SMEFT results with GNNs



Particle event as a graph
1. Usually graphs are constructed either w.r.t. the distance between the nodes or fully 

connected. 

2. Here instead attempt to use systematic procedure to construct physics-inspired graphs from 

final states :

a. Impose basic selection criteria on jets, leptons and b-quarks

b. Create nodes for jets, lepton, b-quarks and missing transverse momentum (MTM).

c. Attempt to reconstruct invariant mass of the two W bosons from lepton-MTM and dijet.

d. If reconstructed masses are relatively close to actual W mass create node.

e. Attempt to reconstruct top quarks and create nodes.

     



Particle events as Graph
Edges are connected according to the decay from their parent particles



Graph Features
Node Features

● Transverse momentum 

● Azimuthal angle

● Pseudorapidity 

● Energy

● Invariant mass

● Particle Identity

No Edge feature in our set-up

Goal: GNN should utilize the features and graph structure to classify events according to the 
operator that gave rise to it or as purely-SM   Multi-Class Setup



GNN Architecture 

● Updates features of vertex  i using other nodes in its neighbourhood, N{i} 

● Node aggregation is done by taking mean

●      and        are linear layer

● Graph readout done by taking mean



Two Operator scenario
● Test a simple scenario with only two four fermion operator



Schematics



Training the GNN  
Optimize parameters by minimizing categorical cross-entropy function

Optimized hyperparameters & architecture to achieve better convergence. 

 



Performance of GNN via ROC curve
● Different architectures and embeddings were compared with Receiver Operating Characteristic 

curves. 
●  ROC curves calculated for each operator in a one-vs-rest scheme.
●  Additionally calculate curve for overall EFT performance using 



Probability distribution of the network output
The network essentially separates events into three different regions. 



Fit
• Performed χ2 fit using pT (b1) distributions at an extrapolated luminosity 3/ab. 

• Cuts on network scores result in improved performance over just the selection cuts. 



Fit-alternative
Can also perform fit on flattened two-dimensional histograms from scores. 

Example two-dimensional histograms for each contribution, normalised to the cross-section rate. 



Contours obtained from 2D Histogram 
Cutting on the BSM score provides similar contours with the 2D score histogram approach. 



Full Fit constraints with GNN selection
● Extend setup to 13 SMEFT operators relevant to the process.

●   ROC curves indicate the capability of the network to distinguish operators. 



Baseline analysis 
● Performed analysis of CMS (1610.04191) for comparison with results based on GNN score cut. 



Baseline Analysis bounds 



Improvements on bounds 



Comments on the results

● GNN performs well in discriminating non-resonant top decay contributions. 

● Sizeable improvement when momentum enhancement is present.

● Operators with small improvements are relatively under control via the inclusive rate and baseline 

selection. 

● Improvements on profiled bounds can be greater than individual ones since a cut on the EFT score 

can select a region where the impact of other operators is reduced. 

● Improvements should generalise to Λ-4 terms of cross-section expansion. 



Conclusion
● Highly non-trivial task to design representation/algorithms which would achieve optimal 

knowledge of the background

● Graphs are an efficient way to represent jets, with the ability to incorporate relational (via 

edge-features) information between constituents

● Graph autoencoders can learn both local as well as global features(via edge-reconstruction) of 

QCD jets thereby making it a “promising candidate”

● Shown to be robust to complexity bias with the added benefit of an efficient representation 

with no inherent Euclidean bias

● Integration of physics-knowledge very much important to achieve the goal of learning 

non-trivial topologies of collider events

                               Thank you



Back up



Applications to HEFT:
● Quartic Gauge-Higgs couplings:

Feynman diagrams contributing to WBF-production of di-Higgs



Fully connected Graph : constrainting the 



Latent graph-representation



Latent graph-representation



Jet dataset details



Feature distribution of Microjets



Feature distribution of Microjets



NN Conv [1704.01212]

https://arxiv.org/abs/1704.01212


Edge Conv [1704.06199]

https://arxiv.org/abs/1704.06199

