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Today’s discussion will include:
» Motivation for b-tagging
» Machine Learning in HEP
» Data Collection and Jet Reconstruction
» Deeps Sets and Message Passing Neural Networks
» Current GNN Implementations in ATLAS and CMS
» Calibration of Taggers
» Unfolding



Table 11.3:  The branching ratios and the relative uncertainty [44,45] for a SM
Higes boson with my = 125 GeV.

Decay channel  Branching ratio

Rel. uncertainty

H =y 297 x 103
H—ZZ 262 x 1072
H - WHW- 2.14 % 1071
H — 7t 6.27 x10~2
H —bb 5.84 % 101
H— Zvy 1.53 % 1073
H— pytp 218 x 1074

+5.0%
—4.9%

+4.3%
—4.1%

+4.3%
—4.2%
+5.7%
—5.7%

+3.2%
—3.3%

+9.0%
—8.9%

+6.0%
—5.9%
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B-tagging is important for any physics process
that includes b-jets in their final state.

Most notably, both Higgs Boson and Top Quark
have large branching ratios to b quark, which
demands that experimentalist focus their

attention on b-tagging.

Source: PDG
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b-jet

B-Hadrons have many distinct properties such
as long lifetime, high number of tracks produced
y A in its decay, as well as displaced secondary
decay " eecondary vertex compared to primary vertex.

lifetime .*",*
ol 1

primary e
vertex - .

prompt tracks

Typically, a B-hadron will travel
several millimeters before decaying
which causes the formation of a
displaced secondary vertex.

Image Credit: here



https://www.hep.physik.uni-siegen.de/research/atlas/atlas-flavor-tagging
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As can be seen in the histograms above, b jets show significant separation
for transverse, d0, and longitudinal, z0, impact parameter significance.

Histograms source: ATL-PHYS-PUB-2017-013
Secondary Vertex Algorithm: ATL-PHYS-PUB-2017-011


http://cds.cern.ch/record/2273281/files/ATL-PHYS-PUB-2017-013.pdf
http://cds.cern.ch/record/2270366/files/ATL-PHYS-PUB-2017-011.pdf
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Source: ATLAS FTAG Public Plots


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
https://www.icepp.s.u-tokyo.ac.jp/download/ICEPP_seminar_Golling.pdf

HEP currently uses ML in nearly all aspects
of experimental, phenomenological, and
theoretical analyses.

Machine learnin
ML is currently used in b-tagging, tau ID, B pamde‘”physicsg
search for new physics, hardware quality
control, anomaly detection, unfolding, and
many others.

A comprehensive list of current uses for ML
in HEP are shown in the link below.

Useful Link: HEPML-LivingReview

Image Credit: Javier Duarte


https://github.com/jmduarte/Nomological_Net_ML_Particle_Physics
https://iml-wg.github.io/HEPML-LivingReview/
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A simple neural network is a directed acyclic graph
that consists of neurons which use a weighted sum
over the inputs of the previous layer and an
activation function, K, to generate an output.

f(z) = K (3.; wigi(z))

The weights are “learned” (or rather optimized) during the

] il - training process by performing gradient descent of the loss
iw)- | | 2 ey function by evaluating the loss for predicted labels vs true
e labels. Common loss functions include cross entropy for
R classification or MSE for regression.

Source: Mathematics of NNs
Credit: LBNL ML July 2023 Workshop



https://en.wikipedia.org/wiki/Mathematics_of_artificial_neural_networks
https://indico.cern.ch/event/1264566/contributions/5348550/attachments/2690296/4669814/ATLASML_2023July25.pdf

ATLAS

EXPERIMENT

Universal approximation theorem — Let C( X, R™) denote the set of continuous functions from a subset X of a Euclidean R™ space to
a Euclidean space R™. Let o € C(IR,IR). Note that (o o &); = o(x;), so o o x denotes ¢ applied to each component of z.

Then o is not polynomial if and only if foreveryn € N, m € N, compact K C R", f € C(K,R™),e > Othere exist k € N,
A e RF" e RF € e R™* such that

sup || f(z) — g(z)|| <e
reK

where g(z) = C - (g o (A -z + b))

"F ATLAS Simulation Prefminary " Jsoo
O o o 70% - Jos Arbitrarily deep and wide neural networks allow us to
5% ]S approximate any function. If deep NN can approximate
g o T e “5°°'§ any function, why have we seen performance
5 %o - DL1d f1o00 £ improvement by switching to GNN? The answer lies in
®f ow - better data representation.
10 ]
a7 i a0t f,‘fa"r ez 202 208 Source: Universal Approximation Theorem Wikipedia


https://en.wikipedia.org/wiki/Universal_approximation_theorem
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Typical events in the ATLAS
detector are very “busy”. What 2ol Ty~ B EXPERTMENT
variables/objects would be most A o e s - O Evene. 2569
useful for the NN? : SOy e

Data is collected as readout from
sensors from two main
components: the tracker and the
calorimeter.

How do we reconstuctthe
readout from these sensors as
tracks and jets? How do we best
represent this data for a NN?

Source: ATLAS Public Event Dislay
Source: Event Display Public Results


https://atlaspo.cern.ch/public/event_display/
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayPublicResults
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proton

X
—

proton

Parton jet
Particle jet Track jet

Calorimeter jet

_antik R | N — _

— Current reconstruction techniques at ATLAS

use tracker hits and Calorimeter deposits to
reconstruct PFlow Jets.

The anti-kt algorithm, shown left, is used to
cluster jets.

Credit: ATLAS Hadronic Calibration Workshop
Anti-k: Source: arxiv 0802.1189



https://indico.cern.ch/event/1268247/contributions/5464275/attachments/2708023/4701776/HCW%202023%20Jet%20Inputs%20and%20Calibration%20Dilia.pdf
https://arxiv.org/pdf/0802.1189.pdf

Table 2: Input features to the GN1 model. Basic jet kinematics, along with information about the reconstructed track
parameters and constituent hits are used. Shared hits, are hits used on multiple tracks which have not been classified
as split by the cluster-splitting neural networks [15], while split hits are hits used on multiple tracks which have been
identified as merged. A hole is a missing hit, where one is expected, on a layer between two other hits on a track. The
track leptonlD is an additional input to the GN1 Lep model.

Jet Input Description

pr Jet transverse momentum

n Signed jet pseudorapidity

Track Input  Description

qlp Track charge divided by momentum (measure of curvature)

dn Pseudorapidity of the track, relative to the jet n

de Azimuthal angle of the track, relative to the jel ¢

dy Closest distance [rom the track to the PV in the longitudinal plane
Zgsind Closest distance from the track to the PV in the transverse plane
alg/p) Uncertainty on g/ p

o (6) Uncertainty on track polar angle 8

() Uncertainty on track azimuthal angle ¢

s(dn) Lifetime signed transverse 1P significance

s(zp) Lifetime signed longitudinal IP significance

nPixHits Number of pixel hits

nSCTHits Number of SCT hits

nIBLHits Number of IBL hits

nBLHits Number of B-layer hits

nIBLShared  Number of shared IBL hits

nIBLSplit Number of split IBL hits

nPixShared  Number of shared pixel hils

nPixSplit Number of split pixel hits

nSCTShared Number of shared SCT hits

nPixHoles Number of pixel holes

nSCTHoles ~ Number of SCT holes

leptonlD Indicates if track was used in the reconstruction of an electron or muon (only for GN1 Lep)
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Once the event has been
reconstructed, we have access to all
the information shown in the table.

Calorimeter information includes
pT, eta, and phi of the jet.

Tracker information includes

kinematics, secondary vertex
information, and tracker hits.

Source: ATL-PHYS-PUB-2022-027


https://cds.cern.ch/record/2811135/files/ATL-PHYS-PUB-2022-027.pdf

| DespSetDuaReprenaton  SPATLAS

For the purpose of flavor tagging, each jet is represented by an unordered
collection of tracks. The number of tracks per jet can vary and the order of the
tracks should not affect the output of the classifier.

How do we learn from set data? Deep sets.

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, 1.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" &(x)), for suitable transformations ¢ and p.

t The foundation of Message Passing GNNs

Note: Deep sets representation is similar to point cloud representation.

Source: arxiv 1703.06114


https://arxiv.org/pdf/1703.06114.pdf
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X =@ [0, @ o (x4, ey)

\/
input features: self, neighbor, and edge

1. Prepare Message

-Use NN that learns the optimal message
2. Aggregate Messages

-Use a permutation invariant operation on the messages such as sum, mean, or max.
3. Update Node Embeddings

-Use NN that learns the optimal node embedding update.

Source: PyTorch Documentation


https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html

Self Track +
Aggregated Message
= {pT, N ,¢} th = {f1,f2,f3,...}
t. = {pT,n,¢p} 1. Prepare Message

2. Aggregate Messages
3. Update Node Embeddings
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GNN representation

Graph
Network

Jet flavour

prediction

Track
Initialiser
Node
Network

. Tracl_( origin
predictions

Combined Intial track Conditional track \

Inputs representation representation

Edge
Network

Vertex
predictions

Figure 3: The network architecture of GN1. Inputs are fed into a per-track initialisation network, which outputs an
initial latent representation of each track. These representations are then used to populate the node features of a fully
connected graph network. After the graph network, the resulting node representations are used to predict the jet

flavour, the track origins, and the track-pair vertex compatibility.

The GNN in ATLAS uses message passing neural network to update the node
representation of each track based on its neighbors. Then jet classification

can be done using a global graph network.

Source: ATL-PHYS-PUB-2022-027



https://cds.cern.ch/record/2811135/files/ATL-PHYS-PUB-2022-027.pdf
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Figure 5: The c-jet (left) and light-jet (right) rejections as a function of the b-jet tagging efficiency for jets in the 17 Figure 6: The c-jet (left) and light-jet (right) rejections as a function of the b-jet tagging efficiency for jets in the Z’
sample with 20 < pr < 250 GeV. The ratio with respect to the performance of the DL1r algorithm is shown in the sample with 250 < pt < 5000 GeV. The ratio with respect to the performance of the DL Ir algorithm is shown in the
bottom panels. A value of f. = 0.018 is used in the calculation of Dy, for DLIr and f, = 0.05 is used for GN1 and bottom panels. A value of f. = 0.018 is used in the calculation of 1, for DL1r and f. = 0.05 is used for GN1 and
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light-jet rejection becomes so large that the effect of the low number of jets is visible. The lower x-axis range is light-jet rejection becomes so large that the effect of the low number of jets is visible. The lower x-axis range is
chosen (o display the b-jel Lagging efficiencies usually probed in these regions of phase space. chosen to display the b-jet tagging efficiencies usually probed in these regions of phase space.

Previous model used in ATLAS, DL1r, uses Deep Learning approach. Notice there is
a large improvement in c-jet and light-jet rejection by using a deep set data
representation.
Source: ATL-PHYS-PUB-2022-027


https://cds.cern.ch/record/2811135/files/ATL-PHYS-PUB-2022-027.pdf
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GN2 uses the same architecture as GN1 but includes a multi-head attention layer after
the updated GNN node embeddings. This has been shown to increase performance.

GN2X: ATL-PHYS-PUB-2023-021



https://cds.cern.ch/record/2866601/files/ATL-PHYS-PUB-2023-021.pdf
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Figure 2: Top and multijet rejections as a function of the H(bb) efficiency for jets with pp > 250 GeV and mass
50GeV < my < 200GeV. Performance of the GN2X algorithm is compared to the Dy, and VR subjets baselines.
Statistical uncertainty bands (calculated with a binomial model) are denoted. The distribution is shown for the SM

evaluation samples. GN2X: ATL-PHYS-PUB-2023-021


https://cds.cern.ch/record/2866601/files/ATL-PHYS-PUB-2023-021.pdf

ATLAS

EXPERIMENT

% Building block

Input features Edge features Llnear transformations ¢ - c® - c2 - c9 Aggregation over k nearest nelghbours Output features
s 0 . et W) 55 e,
i  nearest) H

’ “"”“"‘ ew featu,es(d ..... e \ ~"",'m';;;;,;;';", """"""""""""""""""
% % % ﬁl < % % WK % % %

_ oo & K ................................. EdgeConv block (k. (C{). C2. C) J

Input coordinates

o Architecture

____________________ B - . Global average poollng Fully

it i 4G i connected

| features T o EdgeConv EdgeConv EdgeConv \ Outout
L L Lt Con :—» > | dro opout p-0. -O©@> ;

T input (16, (64, 64, 64) (16, (128, 128, 128)) (16, (256,256, 256)| (o1, dmmnion ©) -0 [
i coordinates | % E E

N o C =256

....................

Full Schematic of CMS ParticleNet

ParticleNet and GN1 are both examples of message passing neural networks. However,
ParticleNet uses a clever trick by performing dynamic edge convolution using k-nearest
neighbors which allows ParticleNet to learn connections between subjets.

Source: ParticleNet Documentation


https://cms-ml.github.io/documentation/inference/particlenet.html
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Figure 2: We present the distribution of the AR of the five most relevant edges for top quark jets
(blue) versus QCD jets (orange) for an untrained ParticleNet model (left) and the learned distribution
by a trained ParticleNet model (right). The result for the untrained model is an average over 10
randomly initialized models.

As ParticleNet performs dynamic edge convolutions, the distribution of the
most relevant edges is affected differently for Top and QCD jets.

Source: arxiv 2211.09912


https://arxiv.org/pdf/2211.09912.pdf
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Figure 3: The three edge R graphs for a true top quark jet corresponding to the three graphs learned
with each EdgeConv block. The jet constituents are represented as nodes in (7, ¢) space with
interconnections as edges, whose intensities correspond to the connection’s edge I? score. Each
node’s intensity corresponds to the relative p of the corresponding particle. Constituents belonging
to the three different CA subjets are shown in blue, red, and green in descending pr order. We
observe that by the last EdgeConv block the model learns to rely more on edge connections between
the different subjets.

As shown in the linked paper, the use of dynamic edge convolutions allows particle
net to learn connections between subjets which is hinting at the physical
substructure of the jet. QCD jets do not exhibit this behavior with ParticleNet.

Source: arxiv 2211.09912


https://arxiv.org/pdf/2211.09912.pdf
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Semi-leptonic ttbar decay has a unique signature in the detector, and can be
used for tagger calibration. The method is referred to as tag and probe
method where the lepton, b-tagged jet, and MET are matched to a large-R jet.

Source: ATL-PHYS-PUB-2021-035



https://cds.cern.ch/record/2777811/files/ATL-PHYS-PUB-2021-035.pdf
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Figure 9: Data and MC simulated distributions of pr (a) and mass of the probe jet (b) for the pre-tag selection, The
ratio pancl shows the data-to-MC ratio. The uncertainty band includes MC statistical and systematic uncertaintics.

Source: ATL-PHYS-PUB-2021-035


https://cds.cern.ch/record/2777811/files/ATL-PHYS-PUB-2021-035.pdf
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Figure 11: Post-fit distribution of the large-R jet mass in Sng?“ used for calibration of the top jet mis-tag efficiency
with X — bb tagger at 60% efficiency WP for 300 < p_';m& < 400 GeV (a); 400 < p?mh < 500 GeV (b);
500 < p_':“k <= 000 GeV (c) and 600 < p_';“b“ < 1000 GeV (d). The uncertainty band represents the systematic
uncertainty.

Source: ATL-PHYS-PUB-2021-035



https://cds.cern.ch/record/2777811/files/ATL-PHYS-PUB-2021-035.pdf

pr 1GeV] 300 —400 | 400-500 | 500-600 | 600 - 1000
SF 1.06 1.08 1.14 0.99
Total unc. 0045 10 011 016
Statistic unc. 0018 0.029 (M6 006
Systematic unc. 0.041 0.095 w5 015
1 modelling 0.039 0.094 0.088 0.14
i PS <0.001 0.002 0.003 0.002
17 FSR 0.022 0.075 0.036 0.093
17 ISR 0.031 0.055 0.078 011
1 generator <0.001 <0.001 <0.001 <0.001
it PDF 0.01 0.015 0.019 0.022
I7 cross-section - <0.001 <0.001 <0.001
Single-top modelling 0.007 0.009 0020 0.023
Single-top We DR vs DS 0.005 0.007 0.014 0.015
Single-top PS <0.001 0.002 0.007 0.015
Single-top generator 0.004 - 0011 0.002
Single-top cross-section 0.003 0.002 0.003 0.003
W 4 jets ( scale, cross-section ) 0.004 0.003 0.004 0.005
Small-R jet energy 0.008 0.011 0022 0016
Large-R jet energy and mass 0.004 0.008 0.014 0.008
Small-R jet Flavour tagging related 0.001 0.001 0001 0002
Others 0.003 0.004 0.004 0.006
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Breakdown of uncertainties on
the scale factor are obtained
with a non-profile liklihood fit.

Source: ATL-PHYS-PUB-2021-035


https://cds.cern.ch/record/2777811/files/ATL-PHYS-PUB-2021-035.pdf

ATLAS

EXPERIMENT

Notice how this entire talk | have been referring to reconstruction level
information. Reconstructed information has unwanted detector effects... (¢"_"e )

Generative models

Detector response

Unfolding |

What if we want to unfold the detector level measurement to get truth level information?

Credit: Returning CP-Observables to The Frames They Belong
Image Source: LBNL ML Workshop 2023 Unfolding Slides


https://arxiv.org/pdf/2308.00027.pdf
https://docs.google.com/presentation/d/18rd8jqp49I3hFU-T25O9YIBLXEl7kjp_fY_QYxH64CQ/edit?pli=1#slide=id.g11df3c9650e_0_0

PN Paras

Thank you for listening! (e _ )

Questions?

» Motivation for b-tagging

» Machine Learning in HEP

» Data Collection and Jet Reconstruction

» Deeps Sets and Message Passing Neural Networks
» Current GNN Implementations in ATLAS and CMS
» Calibration of Taggers

» Unfolding
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